Journal of Insect Behavior

, Volume 9, Issue 3, pp 421–440 | Cite as

Intranidal mating, emergence, and sex ratio in a communal beeAndrena jacobi Perkins 1921 (Hymenoptera: Andrenidae)

  • R. J. Paxton
  • J. Tengö


The extent of preemergence intranidal mating, schedules of emergence, and sex ratio at emergence were documented forAndrena jacobi, a communal, univoltine bee, by collecting and dissecting adults as they emerged from their fossorial nests in 1994. Over 70% of females had mated intranidally with nestmate males, thus potentially incestuously, before emerging. Preemergence intranidal mating did not vary during a day or between nests within a day, though it was less frequent at the start and end of the period of emergence. It was independent of a female's size.A. jacobi was protandrous, though some males emerged after all females. The sex ratio at emergence was remarkably female biased, possibly a consequence of local mate competition. Intranidal mating may represent a characteristic trait of communal bees where a high density of receptive females are predictably aggregated within a nest.

Key Words

communal bee intranidal mating emergence protandry sex ratio inbreeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcock, J. (1979). The evolution of intraspecific diversity in male reproductive strategies in some bees and wasps. In Blum, M. S., and Blum, N. A. (eds.).Sexual Selection and Reproductive Competition in Insects, Academic Press, New York, pp. 381–402.Google Scholar
  2. Alcock, J., and Buchmann, S. L. (1985). The significance of post-insemination display by maleCentris pallida (Hymenoptera: Anthophoridae).Z. Tierpsychol. 68: 231–243.Google Scholar
  3. Alcock, J., Jones, C. E., and Buchmann, S. L. (1976). Location before emergence of the female bee,Centris pallida, by its male (Hymenoptera: Anthophoridae).J. Zool. (Lond.) 179: 189–199.Google Scholar
  4. Alcock, J., Eickwort, G. C., and Eickwort, K. R. (1977a). The reproductive behavior ofAnthidium maculosum (Hymenoptera: Megachilidae) and the evolutionary significance of multiple copulations by females.Behav. Ecol. Sociobiol. 2: 385–396.Google Scholar
  5. Alcock, J., Jones, C. E., and Buchmann, S. L. (1977b). Male mating strategies in the beeCentris pallida Fox (Anthophorodae: Hymenoptera).Am. Nat. 111: 145–155.Google Scholar
  6. Alcock, J., Barrows, E. N., Gordh, G., Hubbard, J., Kirkendall, L., Pyle, D. W., Ponder, T. L., and Zalom, F. G. (1978). The ecology and evolution of male reproductive behaviour in the bees and wasps.Zool. J. Linn. Soc. 64: 293–326.Google Scholar
  7. Ayasse, M., Leys, R., Pamilo, P., and Tengö, J. (1990). Kinship in communal nestingAndrena (Hymenoptera: Andrenidae) bees is indicated by composition of Dufour's gland secretions.Biochem. Syst. Ecol. 18: 453–460.Google Scholar
  8. Barrows, E. M. (1975). Mating behavior in halictine bees. III. Copulatory behavior and olfactory communication.Insectes Soc. 22: 307–331.Google Scholar
  9. Barrows, E. M. (1976). Mating behavior in halictine bees. II. Microterritorial and patrolling behavior in males ofLasioglossum rohweri.Z. Tierpsychol. 40: 377–389.Google Scholar
  10. Barthell, J. F., and Daly, H. V. (1995). Male size variation and mating site fidelity in a population ofHabropoda depressa (Hymenoptera: Anthophoridae).Pan-Pac. Entomol. 71: 149–156.Google Scholar
  11. Batra, S. W. T. (1990). Bionomics of a vernal solitary beeAndrena (Scapteropsis) alleghaniensis Viereck in the Adirondacks of New York (Hymenoptera: Andrenidae).J. Kans. Entomol. Soc. 63: 260–266.Google Scholar
  12. Boomsma, J. J. (1989). Sex-investment ratios in ants: has female bias been systematically overestimated.Am. Nat. 133: 517–532.Google Scholar
  13. Bulmer, M. G. (1983). Models for the evolution of protandry in insects.Theor. Pop. Biol. 23: 314–322.Google Scholar
  14. Cane, J. H., and Tengö, J. (1981). Pheromonal cues direct mate-seeking behavior of maleColletes cunicularius (Hymenoptera: Colletidae).J. Chem. Ecol. 7: 427–436.Google Scholar
  15. Charnov, E. L. (1982).The Theory of Sex Allocation, Princeton University Press, Princeton, NJ.Google Scholar
  16. Cowan, D. P. (1979). Sibling matings in a hunting wasp: adaptive inbreeding?Science 205: 1403–1405.Google Scholar
  17. Crozier, R. H., and Pamilo, P. (1996).Evolution of Social Insect Colonies, Oxford University Press, Oxford.Google Scholar
  18. Danforth, B. N. (1990). Provisioning behavior and the estimation of investment ratios in a solitary bee,Calliopsis (Hypomacrotera) persimilis (Cockerell) (Hymenoptera: Andrenidae).Behav. Ecol. Sociobiol. 27: 159–168.Google Scholar
  19. Danforth, B. N. (1991). The morphology and behavior of dimorphic males inPerdita portalis (Hymenoptera: Andrenidae).Behav. Ecol. Sociobiol. 29: 235–247.Google Scholar
  20. Danforth, B. N., and Neff, J. L. (1992). Male polymorphism and polyethism inPerdita texana (Hymenoptera: Andrenidae).Ann. Entomol. Soc. Am. 85: 616–626.Google Scholar
  21. Danforth, B. N., Neff, J. L., and Barretto-Ko, P. (1996). Nestmate relatedness in a communal bee,Perdita texana (Hymenoptera: Andrenidae), based on DNA fingerprinting.Evolution 50: 376–384.Google Scholar
  22. Eickwort, G. C., and Ginsberg, H. S. (1980). Foraging and mating in Apoidea.Annu. Rev. Entomol. 25: 421–446.Google Scholar
  23. Fisher, R. A. (1958).The Genetical Theory of Natural Selection (2nd ed.), Dover, New York.Google Scholar
  24. Foster, R. L. (1992). Nestmate recognition as an inbreeding avoidance mechanism in bumble bees (Hymenoptera: Apidae).J. Kans. Entomol. Soc. 65: 238–243.Google Scholar
  25. Free, J. B. (1987).Pheromones of Social Bees, Chapman & Hall, London.Google Scholar
  26. Frohlich, D. R., and Tepedino, V. J. (1986). Sex ratio, parental investment, and interparent variability in nesting success in a solitary bee.Evolution 40: 142–151.Google Scholar
  27. Hallmen, M. (1991). Einige Beobachtungen zum Flugverhalten von Drohnen an einer Kolonie der SolitärbieneAndrena vaga Panzer (Hymenoptera: Andrenidae).Nachr. entomol. Ver. Apollo 12: 107–120.Google Scholar
  28. Hamilton, W. D. (1967). Extraordinary sex ratios.Science 156: 477–488.PubMedGoogle Scholar
  29. Hamilton, W. D. (1979). Wingless and fighting males in fig wasps and other insects. In Blum, M. S., and Blum, N. A. (eds.),Sexual Selection and Reproductive Competition in Insects, Academic Press, New York, pp. 167–220.Google Scholar
  30. Hastings, J. (1989). Protandry in western cicada killer wasps (Sphecius grandis, Hymenoptera: Sphecidae): An empirical study of emergence time and mating opportunity.Behav. Ecol. Sociobiol. 25: 255–260.Google Scholar
  31. Heinze, J., and Hölldobler, B. (1993). Fighting for a harem of queens: Physiology of reproduction inCardiocondyla male ants.Proc. Natl. Acad. Sci. 90: 8412–8414.PubMedGoogle Scholar
  32. Heinze, J., Hühnholz, K., Schilder, K., and Hölldobler, B. (1993). Behavior of ergatoid males in the ant,Cardiocondyla.Insectes Soc. 40: 273–282.Google Scholar
  33. Helms, K. R. (1994). Sexual size dimorphism and sex ratios in bees and wasps.Am. Nat. 143: 418–434.Google Scholar
  34. Iwasa, Y., Odendaal, F. J., Murphy, D. D. Ehrlich, P. R., and Launer, A. E. (1983). Emergence patterns in male butterflies: A hypothesis and a test.Theor. Pop. Biol. 23: 363–379.Google Scholar
  35. Keller, L., and Passera, L. (1993). Incest avoidance, fluctuating asymmetry and the consequences of inbreeding inIridomyrmex humilis, an ant with multiple queen colonies.Behav. Ecol. Sociobiol. 33: 191–199.Google Scholar
  36. Kinomura, K., and Yamauchi, K. (1987). Fighting and mating behaviors of dimorphic males in the antCardiocondyla wroughtoni.J. Ethol. 5: 75–81.Google Scholar
  37. Kukuk, P. (1985). Evidence for an antiaphrodisiac in the sweat beeLasioglossum (Dialictus) zephyrum.Science 277: 656–657.Google Scholar
  38. Kukuk, P. F., and May, B. (1990). Diploid males in a primitively eusocial bee,Lasioglossum (Dialictus) zephyrum (Hymenoptera Halictidae).Evolution 44: 1522–1528.Google Scholar
  39. Kukuk, P. F., and Sage, G. K. (1994). Reproductivity and relatedness in a communal halictine bee,Lasioglossum (Chilalictus) hemichalceum.Insectes Soc. 41: 443–455.Google Scholar
  40. Kukuk, P. F., and Schwarz, M. P. (1988). Macrocephalic male bees as functional reproductives and probable guards.Pan-Pac. Entomol. 64: 131–137.Google Scholar
  41. Larsen, O. N., Gleffe, G., and Tengö, J. (1986). Vibration and sound communication in solitary bees and wasps.Physiol. Entomol. 11: 287–296.Google Scholar
  42. Leys, R. (1994). Diploid andrenid males can be recognised using morphometric data. In Lenoir, A. Arnold, G., and Lepage, M. (eds.),12th Congress of the International Union for the Study of Social Insects, Publications Université Paris Nord, Paris, pp. 458.Google Scholar
  43. Linsley, E. G., MacSwain, J. W., and Raven, P. H. (1964). Competitive behavior of bees andOnagraceae III.Oenothera bees of the Mojave Desert.Univ. Calif. Publ. Entomol. 33: 59–98.Google Scholar
  44. Michener, C. D. (1974).The Social Behavior of the Bees. A Comparative Study, Belknap Press of Harvard University Press, Cambridge, MA.Google Scholar
  45. Michod, R. E. (1993). Inbreeding and the evolution of social behavior. In Thornhill, N. W. (ed.),The Natural History of Inbreeding and Outbreeding. Theoretical and Empirical Perspectives, University of Chicago Press Chicago, pp. 74–96.Google Scholar
  46. Minckley, R. L., Wcislo, W. T., Yanega, D., and Buchmann, S. L. (1994). Behavior and phenology of a specialist bee (Dieunomia) and sunflower (Helianthus) pollen availability.Ecology 75: 1406–1419.Google Scholar
  47. Page, R. E. (1980). The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.)Genetics 96: 263–273.PubMedGoogle Scholar
  48. Parker, G. A., and Courtney, S. P. (1983). Seasonal incidence: adaptive variation in life-history strategies.J. Theor. Biol. 105: 147–155.Google Scholar
  49. Plowright, R. C., and Pallett, M. J. (1979). Worker-male conflict and inbreeding in bumble bees (Hymenoptera: Apidae).Can. Entomol. 111: 289–294.Google Scholar
  50. Raw, A., and O'Toole, C. (1979). Errors in the sex of eggs laid by the solitary beeOsmia rufa (Megachilidae).Behaviour 70: 168–171.Google Scholar
  51. Raymond, M., and Rousset, F. (1995). GENEPOP (V 1.2): Population genetics software for exact tests and ecumenicism.J. Hered. 86: 248–249.Google Scholar
  52. Robertson, C. (1918). Proterandry and flight of bees (Hymenoptera).Entomol. News 29: 340–342.Google Scholar
  53. Robertson, C. (1930a). Proterandry and flight of bees (Hymenoptera: Apoidea), a second paper.Entomol. News 41: 154–157.Google Scholar
  54. Robertson, C. (1930b). Proterandry and flight of bees. III. (Hym.: Apoidea).Entomol. News 41: 331–336.Google Scholar
  55. Rust, R. W. (1991). Size-weight relationships inOsmia lignaria propinqua Cresson (Hymenoptera: Megachilidae).J. Kans. Entomol. Soc. 62: 174–178.Google Scholar
  56. Ryan, R., and Gamboa, G. J. (1986). Nestmate recognition between males and gynes of the social waspPolistes fuscatus (Hymenoptera: Vespidae).Ann. Entomol. Soc. Am. 79: 572–575.Google Scholar
  57. Schönitzer, K., and Klinksik, C. (1990). The ethology of the solitary beeAndrena nycthemera Imhoff, 1866 (Hymenoptera, Apoidea).Entomofauna Z. Entomol. 11: 377–427.Google Scholar
  58. Schwarz, M. P. (1988). Local resource enhancement and sex ratios in a primitively social bee.Nature 331: 346–348.Google Scholar
  59. Severinghaus, L. L., Kurtak, B. H., and Eickwort, G. C. (1981). The reproductive behavior ofAnthidium manicatum (Hymenoptera: Megachilidae) and the significance of size for territorial males.Behav. Ecol. Sociobiol. 9: 51–58.Google Scholar
  60. Smith, B. H. (1983). Recognition of female kin by male bees through olfactory signals.Proc. Natl. Acad. Sci. 80: 4551–4553.Google Scholar
  61. Smith, B. H., and Ayasse, M. (1987). Kin-based male mating preference in two species of halictine bees.Behav. Ecol. Sociobiol. 20: 313–318.Google Scholar
  62. Stuart, R. J., Francoeur, A., and Loiselle, R. (1987). Lethal fighting among dimorphic males of the ant,Cardiocondyla wroughtoni.Naturwissenschaften 74: 548–549.Google Scholar
  63. Tengö, J. (1979). Odour-released behaviour inAndrena male bees (Apoidea, Hymenoptera).Zoon 7: 15–48.Google Scholar
  64. Tengö, J., Ågren, L., Baur, B., Isaksson, R., Liljefors, T., Mori, K., König, W., and Francke, W. (1990).Andrena wilkella male bees discriminate between enantiomers of cephalic secretion components.J. Chem. Ecol. 16: 429–441.Google Scholar
  65. Tengö, J., and Bergström, G. (1977). Comparative analysis of complex secretions from heads ofAndrena bees (Hymenoptera, Apoidea).Comp. Biochem. Physiol. B 57: 197–202.Google Scholar
  66. Tepedino, V. J. (1980). Sex ratio ofHylaeus bisinuatus Forster (Hymenoptera: Colletidae).J. Kans. Entomol. Soc. 53: 805–810.Google Scholar
  67. Tepedino, V. J., and Parker, F. D. (1983). Nest size, mortality and sex ratio inOsmia marginata Michener.Southwest. Entomol. 8: 154–167.Google Scholar
  68. Thornhill, R., and Alcock, J. (1983).The Evolution of Insect Mating Systems, Harvard University Press, Cambridge, MA.Google Scholar
  69. Torchio, P. F., and Tepedino, V. J. (1980). Sex ratio, body size and seasonality in a solitary bee,Osmia lignaria propinqua Cresson (Hymenoptera: Megachilidae).Evolution 34: 993–1003.Google Scholar
  70. Visscher, P. K., and Danforth, B. N. (1993). Biology ofCalliopsis pugionis (Hymenoptera: Andrenidae): Nesting, foraging, and investment sex ratio.Ann. Entomol. Soc. Am. 86: 822–832.Google Scholar
  71. Vleugel, D. A. (1947). Waarnemingen aan het gedrag van de Grijze Graafbij (Andrena vaga Panz.) (Hym.).Entomol. Ber. 12: 185–192.Google Scholar
  72. Westrich, P. (1989).Die Wildbienen Baden Württembergs, Verlag Eugen Ulmer, Stuttgart.Google Scholar
  73. Wiklund, C., and Fagerström, T. (1977). Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies.Oecologia 31: 153–158.Google Scholar
  74. Yamauchi, K., Furukawa, T., Kinomura, K., Takamine, H., and Tsuji, K. (1991). Secondary polygyny by inbred wingless sexuals in the dolichoderine antTechnomyrmex albipes.Behav. Ecol. Sociobiol. 29: 313–319.Google Scholar
  75. Zar, J. H. (1984).Biostatistical Analysis (2nd ed.), Prentice-Hall, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • R. J. Paxton
    • 1
    • 2
  • J. Tengö
    • 2
  1. 1.Department of GeneticsUppsala UniversityUppsalaSweden
  2. 2.Ecological Research Station of Uppsala UniversityÖlands SkogsbySweden

Personalised recommendations