Journal of Theoretical Probability

, Volume 7, Issue 3, pp 681–702

The multifractal spectrum of statistically self-similar measures

  • K. J. Falconer


We calculate the multifractal spectrum of a random measure constructed using a statistically self-similar process. We show that with probability one there is a multifractal decomposition analogous to that in the deterministic self-similar case, with the exponents given by the solution of an expectation equation.

Key Words

Self-similar process fractals random measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbeiter, M. (1992). Construction of random fractal measures by branching processes,Stoch. and Stoch. Reps. 39, 195–212.Google Scholar
  2. 2.
    Bessis, D., Paladin, G., Turchetti, G., and Vaienti, S. (1988). Generalized dimensions, and Liapunov exponents from the pressure function for strange sets,J. Stat. Phys. 51, 109–134.Google Scholar
  3. 3.
    Cawley, R., and Mauldin, R. D. (1992). Multifractal decomposition of Moran fractals,Adv. Math. 92, 196–236.Google Scholar
  4. 4.
    Edgar, G. A., and Mauldin, R. D. (1992). Multifractal decompositions of digraph recursive fractals,Proc. Lond. Math. Soc. 65, 604–628.Google Scholar
  5. 5.
    Falconer, K. J. (1986). Random fractals,Math. Proc. Camb. Phil. Soc. 100, 559–582.Google Scholar
  6. 6.
    Falconer, K. J. (1987). Cut set sums and tree processes,Proc. Am. Math. Soc. 101, 337–346.Google Scholar
  7. 7.
    Falconer, K. J. (1990).Fractal Geometry—Mathematical Foundations and Applications, John Wiley.Google Scholar
  8. 8.
    Feder, J.,Fractals, (1988). Plenum Press, New York.Google Scholar
  9. 9.
    Geronimo, J. and Hardin, D. (1989). An exact formula for the measure dimension associated with a class of piecewise linear maps.Constr. Approx. 5, 89–98.Google Scholar
  10. 10.
    Graf, S. (1987). Statistically self-similar fractals,Prob. Theor. Related Fields,74, 357–392.Google Scholar
  11. 11.
    Graf, S., Mauldin, R. D., and Williams, S. C. (1988). The exact Hausdorff dimension in random recursive constructions,Mem. Am. Math. Soc. 71, #381.Google Scholar
  12. 12.
    Hall, P., and Heyde, C. C. (1980).Martingale Limit Theory and its Applications, Academic Press.Google Scholar
  13. 13.
    Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., and Shraiman, B. (1986). Fractal measures and their singularities: the characterization of strange sets,Phys. Rev.,A33, 1141–1151.Google Scholar
  14. 14.
    Holley, R., and Waymire, E. (1992). Multifractal dimensions and scaling exponents for strongly bounded random cascades,Ann. Appl. Prob.,2, 819–845.Google Scholar
  15. 15.
    Kahane, J.-P. (1974). Sur le modèle de turbulence de Benoit Mandelbrot,C.R. Acad. Sci. Paris,278A, 621–623.Google Scholar
  16. 16.
    Mandelbrot, B. B. (1982).The Fractal Geometry of Nature, W. H. Freeman.Google Scholar
  17. 17.
    Mandelbrot, B. B. (1990). Negative fractal dimension and multifractals,Physica A,163, 306–315.Google Scholar
  18. 18.
    Mauldin, R. D., and Williams, S. C. (1986). Random recursive constructions: asymptotic geometric and topological properties,Trans. Am. Math. Soc.,295, 325–346.Google Scholar
  19. 19.
    Patzschke, N., and Zähle, U. (1990). Self-similar random measures IV—The recursive construction model of Falconer, Graf, Mauldin, and Williams,Math. Nachr.,149, 285–302.Google Scholar
  20. 20.
    Peyrière, J. (1974). Turbulence et dimension de Hausdorff,C.R. Acad. Sci. Paris,278A, 567–569.Google Scholar
  21. 21.
    Rand, D. (1989). The singularity spectrumf(α) for cookie cutters,Ergod. Theor. Dynam. Sys. 9, 527–541.Google Scholar
  22. 22.
    Tricot, C. (1991). Rectifiable and fractal sets, inFractal Geometry and Analysis, Kluwer. pp. 367–403.Google Scholar
  23. 23.
    Olsen, L. (1994).Random Geometrically Graph Directed Self-similar Multifractals, Pitman, to appear.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • K. J. Falconer
    • 1
    • 2
  1. 1.School of MathematicsUniversity WalkBristolUK
  2. 2.Mathematical InstituteUniversity of St AndrewsSt AndrewsUK

Personalised recommendations