Invertebrate Neuroscience

, Volume 1, Issue 4, pp 291–307 | Cite as

Synaptic diversity and differentiation: Crustacean neuromuscular junctions

  • H. L. Atwood
  • R. L. Cooper


Crustacean motor neurons exhibit a wide range of synaptic responses. Tonically active neurons generally produce small excitatory postsynaptic potentials (EPSPs) at low impulse frequencies, and are able to release much more transmitter as the impulse frequency increases. Phasic neurons typically generate large EPSPs in their target cells, but have less capability for frequency facilitation, and undergo synaptic depression during maintained activity. These differences depend in part upon the neuron's ongoing levels of activity; phasic neurons acquire physiological and morphological features of tonic neurons when their activity level is altered. Molecules responsible for adaptation to activity can be sought in single identified phasic neurons with current techniques. The fact that both phasic and tonic neurons innervate the same target muscle fibers is evidence for presynaptic determination of synaptic properties, but there is also evidence for postsynaptic determination of specific properties of different endings of a single neuron. The occurrence of high- and low-output endings of the same tonic motor neurons on different muscle fibers suggests a target-specific influence on synaptic properties. Structural variation of synapses on individual terminal varicosities leads to the hypothesis that individual synapses have different probabilities for release of transmitter. We hypothesize that structurally complex synapses have a higher probability for release than the less complex synapses. This provides an explanation for the larger quantal contents of ‘high-output’ terminals (where the proportion of complex synapses is higher), and also a mechanism for progressive recruitment of synapses during frequency facilitation.

Key words

presynaptic crustacean synapse plasticity ultrastructure adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwood, H. L. (1965) Excitation and inhibition in crab muscle fibres.Comp. Biochem. Physiol.,16, 409–426.PubMedGoogle Scholar
  2. Atwood, H. L. (1967) Variation in physiological properties of crustacean motor synapses.Nature,215, 57–58.PubMedGoogle Scholar
  3. Atwood, H. L. (1972) Crustacean muscle. InThe Structure and Function of Muscle, ed. G. H. Bourne, pp. 421–489. New York: Academic Press.Google Scholar
  4. Atwood, H. L. (1973a) Crustacean motor units. InControl of Posture and Locomotion, ed. R. B. Stein, K. G. Pearson, R. S. Smith and J. B. Redford, pp. 87–104. New York: Plenum Press.Google Scholar
  5. Atwood, H. L. (1973b) An attempt to account for the diversity of crustacean muscles.Amer. Zool.,13, 357–378.Google Scholar
  6. Atwood, H. L. (1976) Organization and synaptic physiology of crustacean neuromuscular systems. Prog. Neurobiol.,7, 291–391.PubMedGoogle Scholar
  7. Atwood, H. L. and Bittner, G. D. (1971) Matching of excitatory and inhibitory inputs to crustacean muscle fibers.J. Neurophysiol.,34, 157–170.PubMedGoogle Scholar
  8. Atwood, H. L. and Hoyle, G. (1965) A further study of the paradox phenomenon of crustacean muscle.J. Physiol. (Lond.),181, 225–234.Google Scholar
  9. Atwood, H. L. and Kwan, I. (1976) Synaptic development in the crayfish opener muscle.J. Neurobiol.,7, 289–312.PubMedGoogle Scholar
  10. Atwood, H. L. and Lnenicka, G. (1992) Differential effects of calcium entry on phasic and tonic motor axons of crayfish.Soc. Neurosci. Abstr.,18, 246.Google Scholar
  11. Atwood, H. L. and Nguyen, P. V. (1995) Neural adaptation in crayfish.Amer. Zool.,35, 28–36.Google Scholar
  12. Atwood, H. L. and Walcott, B. (1965) Recording of electrical activity and movement from legs of walking crabs.Can. J. Zool.,43, 657–665.PubMedGoogle Scholar
  13. Atwood, H. L. and Wojtowicz, J. M. (1986) Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses.Int. Rev. Neurobiol.,28, 275–362.PubMedGoogle Scholar
  14. Atwood, H. L., Dixon, D. and Wojtowicz, J. M. (1989) Rapid introduction of long-lasting synaptic changes at crustacean neuromuscular junctions.J. Neurobiol.,20, 373–385.PubMedGoogle Scholar
  15. Atwood, H. L., Nguyen, P. V. and Mercier, A. J. (1991) Activity-dependent adaptation in neuromuscular systems: comparative observations. InPlasticity of Motoneuronal Connections, ed. A. Wernig, pp. 101–114. Amsterdam: Elsevier.Google Scholar
  16. Atwood, H. L., Govind, C. K. and Wu, C.-F. (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles inDrosophila larvae.J. Neurobiol.,24, 1008–1024.PubMedGoogle Scholar
  17. Atwood, H. L., Cooper, R. L. and Wojtowicz, J. M. (1994) Non-uniformity and plasticity of quantal release at crustacean motor nerve terminals. InMolecular and Cellular Mechanisms of Neurotransmitter Release. ed. L. StjÄrne, P. Greengard, S. Grillner, T. Hökfelt and D. Ottoson, pp. 363–382. New York: Raven Press.Google Scholar
  18. Atwood, H. L., Msghina, M., Lindemeier, H. and Pongs, O. (1995) Homologue ofDrosophila neural protein frequenin selectively expressed in crustacean phasic motor terminals.Soc. Neurosci. Abstr.,21, 709.6.Google Scholar
  19. Barzilai, A., Kennedy, T. E., Sweatt, J. D. and Kandel, E. R. (1989) 5-HT modulates protein synthesis and the expression of specific proteins during long-term facilitation inAplysia sensory neurons.Neuron,2, 1577–1586.PubMedGoogle Scholar
  20. Bishop, C. A., Wine, J. J., Nagy, F. and O'Shea, M. R. (1987) Physiological consequences of a peptide cotransmitter in a crayfish nerve-muscle preparation.J. Neurosci.,7, 1769–1779.PubMedGoogle Scholar
  21. Bittner, G. D. (1968) Differentiation of nerve terminals in the cray-fish opener muscle and its functional significance.J. Gen. Physiol.,51, 731–758.PubMedGoogle Scholar
  22. Bittner, G. D. and Sewell, V. L. (1976) Facilitation at crayfish neuromuscular junctions.J. Comp. Physiol.,109, 287–308.Google Scholar
  23. Blundon, J. A., Wright, S. N., Brodwick, M. S. and Bittner, G. D. (1993) Residual free calcium is not responsible for facilitation of neurotransmitter release.Proc. Natl. Acad. Sci. USA,90, 9388–9392.PubMedGoogle Scholar
  24. Bradacs, H., Cooper, R. L., Msghina, M. and Atwood, H. L. (1995) Divergent synaptic transmission and fine structure of phasic and tonic crustacean motor nerve endings to the same postsynaptic target.Soc. Neurosci. Abstr.,21, 138.14.Google Scholar
  25. Breen, C. and Atwood, H. L. (1983) Octopamine — a neurohormone with pre-synaptic activity-dependent effects at crayfish neuromuscular junctions.Nature,303, 716–718.PubMedGoogle Scholar
  26. Burke, R. (1981) Motor units: Anatomy, physiology, and functional organization. InHandbook of Physiology: The Nervous System. Motor Control. Sect. 1., Vol 2, pp. 345–422. Bethesda: American Physiological Society.Google Scholar
  27. Castellucci, V. F., Kennedy, T. E., Kandel, E. R. and Goelet, P. (1988) A quantitative analysis of 2-D gels identifies proteins in which labeling is increased following long-term sensitization inAplysia.Neuron,1, 321–328.PubMedGoogle Scholar
  28. Cohen, M. W., Jones, O. T. and Angelides, K. J. (1991) Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent Ω-conotoxin.J. Neurosci.,11, 1032–1039.PubMedGoogle Scholar
  29. Connor, E. A. and Smith, M. A. (1994) Retrograde signaling in the formation and maintenance of the neuromuscular junction.J. Neurobiol.,25, 722–739.PubMedGoogle Scholar
  30. Cooper, R. L., Fernández-de-Miguel, F., Adams, W. B. and Nicholls, J. G. (1992) Anterograde and retrograde effects of synapse formation on calcium currents and neurite outgrowth in cultured leech neurons.Proc. R. Soc. Lond. B Biol Sci.,249, 217–222.Google Scholar
  31. Cooper, R. L., Hampson, D. R. and Atwood, H. L. (1995a) Synaptotagmin-like expression in the motor nerve terminals of crayfish.Brain Res.,703, 214–216.PubMedGoogle Scholar
  32. Cooper, R. L., Marin, L. and Atwood, H. L. (1995b) Synaptic differentiation of a single motor neuron: Conjoint definition of transmitter release, presynaptic calcium signals, and ultrastructure.J. Neurosci.,15, 4209–4222.PubMedGoogle Scholar
  33. Cooper, R. L., Stewart, B. A., Wojtowicz, J. M., Wang, S. and Atwood, H. L. (1995c) Quantal measurement and analysis methods compared for crayfish andDrosophila neuromuscular junctions, and rat hippocampus.J. Neurosci. Methods,61, 66–79.Google Scholar
  34. Cooper, R. L, Winslow, J. L., Govind, C. K. and Atwood, H. L. (1996) Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.J. Neurophysiol., in press.Google Scholar
  35. Cotton, J. L. S. and Mykles, D. L. (1993) Cloning of a crustacean myosin heavy chain isoform: Exclusive expression in fast muscle.J. Exp. Zool.,267, 578–586.PubMedGoogle Scholar
  36. Davis, G. W. and Murphey, R. K. (1993) A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: Evidence for retrograde control of facilitation.J. Neurosci.,13, 3827–3838.PubMedGoogle Scholar
  37. Davis, G. W. and Murphey, R. K. (1994) Retrograde signaling and the development of transmitter release properties in the invertebrate nervous system.J. Neurobiol.,25, 740–756.PubMedGoogle Scholar
  38. Delaney, K. R. and Tank, D. W. (1994) A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium.J. Neurosci.,14, 5885–5902.PubMedGoogle Scholar
  39. Delaney, K. R., Zucker, R. S. and Tank, D. W. (1989) Calcium in motor nerve terminals associated with posttetanic potentiation.J. Neurosci.,9, 3558–3567.PubMedGoogle Scholar
  40. Doherty, P., Fazeli, M. S. and Walsh, F. S. (1995) The neural cell adhesion molecule and synaptic plasticity.J. Neurobiol.,26, 437–446.PubMedGoogle Scholar
  41. Dudel, J. (1982) Transmitter release by graded local depolarization of presynaptic nerve terminals at the crayfish neuromuscular junction.Neurosci. Lett.,32, 181–186.PubMedGoogle Scholar
  42. Dudel, J., Parnas, I., Cohen, I. and Franke, C. (1984) Excitability and depolarization-release characteristics of excitatory nerve terminals in a tail muscle of spiny lobster.Pflügers Arch.,401, 293–296.Google Scholar
  43. Eberwine, J., Yeh, H., Miyashiro, K., Cao, Y., Nair, S., Finnell, R., Zettel, M. and Coleman, P. (1992) Analysis of gene expression in single live neurons.Proc. Natl. Acad. Sci. USA,89, 3010–3014.PubMedGoogle Scholar
  44. Fariñas, I., Egea, G., Blasi, J., Cases, C. and Marshal, J. (1993) Calcium channel antagonist omega-conotoxin binds to intramemebrane particles of isolated nerve terminals.Neuroscience,54, 745–752.PubMedGoogle Scholar
  45. Finbow, M. E., Goodwin, S. F., Meagher, L., Lane, N. J., Keen, J., Findlay, J. B. and Kaiser, K. (1994) Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H(+)-ATPase and ductin from gap junctions are the same polypeptide inDrosophila and Manduca: molecular cloning of the Vha16K gene fromDrosophila.J. Cell Sci.,107, 1817–1824.PubMedGoogle Scholar
  46. Frank, E. (1973) Matching of facilitation at the neuromuscular junction of the lobster: a possible case for influence of muscle on nerve.J. Physiol. (Lond.),233, 635–658.Google Scholar
  47. Geinisman, Y., Morell, F. and DeToledo-Morell, L. (1992) Increase in the number of axospinous synapses with segmented postsynaptic densities following hippocampal kindling.Brain Res.,569, 341–347.PubMedGoogle Scholar
  48. Glusman, S. and Kravitz, E. A. (1982) The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations.J. Physiol. (Lond.),325, 223–241.Google Scholar
  49. Goelet, P., Castellucci, V. F., Schacher, S. and Kandel, E. R. (1986) The long and short of long-term memory — a molecular framework.Nature,322, 419–422.PubMedGoogle Scholar
  50. Govind, C. K. (1982) Development of nerve, muscle and synapse. InThe Biology of Crustacea, Vol. 3, Neurobiology: Structure and Function, ed. D. E. Bliss, H. L. Atwood and D. C. Sandeman, pp. 185–204. New York: Academic Press.Google Scholar
  51. Govind, C. K. (1992) Age-related remodeling of lobster neuromuscular terminals.Exp. Gerontol.,27, 63–74.PubMedGoogle Scholar
  52. Govind, C. K. and Walrond, J. P. (1989) Structural plasticity at crustacean neuromuscular synapses.J. Neurobiol.,20, 409–421.PubMedGoogle Scholar
  53. Govind, C. K., Atwood, H. L. and Lang, F. (1973) Synaptic differentiation in a regenerating crab-limb muscle.Proc. Natl. Acad. Sci. USA,70, 822–826.PubMedGoogle Scholar
  54. Grinnell, A. D. (1995) Dynamics of nerve-muscle interaction in developing and mature neuromuscular junctions.Physiol. Rev.,75, 789–834.PubMedGoogle Scholar
  55. Günzel, D., Galler, S. and Rathmayer, W. (1993) Fibre heterogeneity in the closer and opener muscles of crayfish walking legs.J. Exp. Biol.,175, 267–281.Google Scholar
  56. Hackett, J. T., Cochran, S. L., Greenfield, L. J., Brosius, D. C. and Ueda, T. (1990) Synapsin I injected presynaptically into goldfish Mauthner axons reduces quantal synaptic transmission.J. Neurophysiol.,63, 701–706.PubMedGoogle Scholar
  57. Halpern, M. E., Chiba, A., Johansen, J. and Keshishian, H. (1991) Growth cone behavior underlying the development of Stereotypie synaptic connections inDrosophila embryos.J. Neurosci.,11, 3227–3238.PubMedGoogle Scholar
  58. Hariyama, T., Ozaki, K., Tokunaga, F. and Tsukahara, Y. (1993) Primary structure of crayfish visual pigment deduced from cDNA.FEBS Lett.,315, 287–292.PubMedGoogle Scholar
  59. Hatt, H. and Smith, D. O. (1976) Non-uniform probabilities of quantal release at the crayfish neuromuscular junction.J. Physiol. (Lond.),259, 395–404.Google Scholar
  60. Haydon, P. G., Henderson, E. and Stanley, E. F. (1994) Localization of individual calcium channels at the release face of a presynaptic nerve terminal.Neuron,13, 1275–1280.PubMedGoogle Scholar
  61. Helfrich-Forster, C. and Homberg, U. (1993) Pigment-dispersing hormone-immunorective neurons in the nervous system of wild-typeDrosophila melanogaster and of several mutants with altered circadian rhythmicity.J. Comp. Neurol,337, 177–190.PubMedGoogle Scholar
  62. Hong, S. J. and Lnenicka, G. A. (1993) Long-term changes in the neuromuscular synapses of a crayfish motoneuron produced by calcium influx.Brain Res.,605, 121–127.PubMedGoogle Scholar
  63. Hong, S. J. and Lnenicka, G. A. (1995) Activity-dependent reduction in voltage-dependent calcium current in a crayfish motoneuron.J. Neurosci.,15, 3539–3547.PubMedGoogle Scholar
  64. Hoyle, G. and Wiersma, C. A. G. (1958) Excitation at neuromuscular junctions in Crustacea.J. Physiol. (Lond.),143, 403–425.Google Scholar
  65. Iravani, J. (1965) Membrandepolarisation der Muskelfasern des öffnermuskels des Flusskrebses auf Nervenreiz und Kaliumapplikation.Experientia,XXI, 609–610.Google Scholar
  66. Kamiya, H. and Zucker, R. S. (1994) Residual Ca2+ and short-term synaptic plasticity.Nature,371, 603–606.PubMedGoogle Scholar
  67. Kang, W.-K. and Naya, Y. (1993) Sequence of the cDNA encoding an actin homolog in the crayfishProcambarus clarkii.Gene,133, 303–304.PubMedGoogle Scholar
  68. Katz, P. S., Kirk, M. D. and Govind, C. K. (1993) Facilitation and depression at different branches of the same motor axon: Evidence for presynaptic differences in release.J. Neurosci.,13, 3075–3089.PubMedGoogle Scholar
  69. Kennedy, D. and Takeda, K. (1965a) Reflex control of abdominal flexor muscles in the crayfish. I. The twitch system.J. Exp. Biol.,43, 211–227.Google Scholar
  70. Kennedy, D. and Takeda, K. (1965b) Reflex control of abdominal flexor muscles in crayfish. II. The tonic system.J. Exp. Biol.,43, 229–246.Google Scholar
  71. Keshishian, H., Chiba, A., Chang, T. N., Halfon, M. S., Harkins, E. W., Jarecki, J., Wang, L., Anderson, M., Cash, S., Halpern, M. E. and Johansen, J. (1993) Cellular mechanisms governing synaptic development inDrosophila melanogaster.J. Neurobiol.,24, 757–787.PubMedGoogle Scholar
  72. Korneev, S., Blackshaw, S. and Davies, J. A. (1994) cDNA libraries from a few neural cells.Prog. Neurobiol.,42, 339–346.PubMedGoogle Scholar
  73. Kravitz, E. A., Glusman, S., Harris-Warrick, R. M., Livingstone, M. S., Schwarz, T. and Goy, M. F. (1980) Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies.J. Exp. Biol.,89, 159–175.PubMedGoogle Scholar
  74. Kravitz, E. A., Schneider, H., Brooks, B. and Eberwine, J. H. (1992) Monitoring gene expression in single neurons from the lobster CNS.Soc. Neurosci. Abstr.,18, 1413.Google Scholar
  75. Kurdyak, P. A. (1993) Morphological and physiological characterization of neuromuscular junctions in the larva ofDrosophila melanogaster. M Sc. Thesis, University of Toronto.Google Scholar
  76. Kurdyak, P., Atwood, H. L., Stewart, B. A. and Wu, C.-F. (1994) Differential physiology and morphology of motor axons to ventral longitudinal muscles in larvalDrosophila.J. Comp. Neurol.,350, 463–472.PubMedGoogle Scholar
  77. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science,257, 967–971.PubMedGoogle Scholar
  78. Liang, P., Averboukh, L. and Pardee, A. B. (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization.Nucleic Acids Res.,21, 3269–3275.PubMedGoogle Scholar
  79. Llinás, R., McGuinness, T. L., Leonard, C. S., Sugimori, M. and Greengard, P. (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse.Proc. Natl. Acad. Sci. USA,82, 3035–3039.PubMedGoogle Scholar
  80. Llinás, R., Sugimori, M. and Silver, R. B. (1992) Microdomains of high calcium concentration in a presynaptic terminal.Science,256, 677–679.PubMedGoogle Scholar
  81. Lnenicka, G. A. and Atwood, H. L. (1985a) Age-dependent longterm adaptation of crayfish phasic motor axon synapses to altered activity.J. Neurosci.,5, 459–467.PubMedGoogle Scholar
  82. Lnenicka, G. A. and Atwood, H. L. (1985b) Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron.J. Neurobiol.,16, 97–110.PubMedGoogle Scholar
  83. Lnenicka, G. A. and Atwood, H. L. (1988) Long-term changes in neuromuscular synapses with altered sensory input to a crayfish motoneuron.Exp. Neurol.,100, 437–447.PubMedGoogle Scholar
  84. Lnenicka, G. A., Atwood, H. L. and Marin, L. (1986) Morphological transformation of synaptic terminals of a phasic motoneuron by long-term tonic stimulation.J. Neurosci.,6, 2252–2258.PubMedGoogle Scholar
  85. Luck, A., D'Haese, J. and Hinssen, H. (1995) A gelsolin-related protein from lobster muscle: cloning, sequence analysis and expression.Biochem. J.,305, 767–775.PubMedGoogle Scholar
  86. Mackler, S. A., Brooks, B. P. and Eberwine, J. H. (1992) Stimulus-induced coordinate changes in mRNA abundance in single postsynaptic hippocampal CA1 neurons.Neuron,9, 539–548.PubMedGoogle Scholar
  87. Manzanares, M., Marco, R. and Garesse, R. (1993) Genomic organization and developmental pattern of expression of the engrailed gene from the brine shrimpArtemia.Development,118, 1209–1219.PubMedGoogle Scholar
  88. Mercier, A. J. and Atwood, H. L. (1989) Long-term adaptation of a phasic extensor motoneurone in crayfish.J. Exp. Biol.,145, 9–22.Google Scholar
  89. Monyer, H. and Lambolez, B. (1995) Molecular biology and physiology at the single-cell level.Curr. Opin. Neurobiol.,5, 382–387.PubMedGoogle Scholar
  90. Msghina, M., Charlton, M. P. and Atwood, H. L. (1995) Differentiation of transmitter release properties and calcium transients in phasic and tonic motor nerve endings of crustacea.Soc. Neurosci. Abstr.,21, 138.15.Google Scholar
  91. Mulkey, R. M. and Zucker, R. S. (1992) Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation.J. Neurosci.,12, 4327–4336.PubMedGoogle Scholar
  92. Nguyen, P. V. and Atwood, H. L. (1990) Expression of long-term adaptation of synaptic transmission requires a critical period of protein synthesis.J. Neurosci.,10, 1099–1109.PubMedGoogle Scholar
  93. Nguyen, P. V. and Atwood, H. L. (1992a) Electrical stimulation reprograms the metabolic and synaptic phenotypes of crayfish motoneurons.Soc. Neurosci. Abstr.,18, 1131.Google Scholar
  94. Nguyen, P. V. and Atwood, H. L. (1992b) Maintenance of longterm adaptation of synaptic transmission requires axonal transport following induction in an identifed crayfish motoneuron.Exp. Neurol.,115, 414–422.PubMedGoogle Scholar
  95. Nguyen, P. V. and Atwood, H. L. (1994) Altered impulse activity modifies synaptic physiology and mitochondria in crayfish phasic motor neurons.J. Neurophysiol.,72, 2944–2955.PubMedGoogle Scholar
  96. Ogonowski, M. M., Lang, F. and Govind, C. K. (1980) Histochemistry of lobster claw-closer muscles during development.J. Exp. Zool.,213, 359–367.Google Scholar
  97. Okimoto, R. and Wolstenholme, D. R. (1993) A tRNA(Ser)(UCN) gene inArtemia salina mitochondrial DNA: a case of mistaken identity.Curr. Genet.,24, 313–315.PubMedGoogle Scholar
  98. Parnas, I. and Atwood, H. L. (1966) Phasic and tonic neuromuscular systems in the abdominal flexor muscles of the crayfish and rock lobster.Comp. Biochem. Physiol.,18, 701–723.PubMedGoogle Scholar
  99. Parnas, I., Dudel, J. and Parnas, H. (1984) Depolarization dependence of the kinetics of phasic transmitter release at the crayfish neuromuscular junction.Neurosci. Lett.,50, 157–162.PubMedGoogle Scholar
  100. Pekhletski, R., Cooper, R. L., Pekhletskaia, E., Hampson, D. R. and Atwood, H. L. (1995) Differential dispaly of gene expression in single identified neurons showing long term adaptation due to increased electrical activity.Soc. Neurosci. Abstr.,21, 72.9.Google Scholar
  101. Pekhletsky, R., Cooper, R. L., Hampson, D. and Atwood, H. L. (1994) Changes in crayfish mRNA expression during motor neuron adaptation.Amer. Zool.,34, 66A.Google Scholar
  102. Pelliccia, F., Di Castro, M., Lanza, V., Volpi, E. V. and Rocchi, A. (1991) GATA repeats in the genome ofAsellus aquaticus (Crustacea, Isopoda).Chromosoma,100, 152–155.PubMedGoogle Scholar
  103. Pumplin, D. W., Reese, T. S. and Llinas, R. (1981) Are the presynaptic active zone particles the calcium channels?Proc. Natl. Acad. Sci. USA,78, 7210–7213.PubMedGoogle Scholar
  104. Ramon Valverde, J., Batuecas, B., Moratilla, C., Marco, R. and Garesse, R. (1994) The complete mitochondrial DNA sequence of the crustaceanArtemia franciscana.J. Mol. Evol.,39, 400–408.PubMedGoogle Scholar
  105. Rheuben, M. B. (1985) Quantitative comparison of the structural features of slow and fast neuromuscular junctions inManduca.J. Neurosci.,5, 1704–1716.PubMedGoogle Scholar
  106. Robitaille, R., Adler, E. M. and Charlton, M. P. (1990) Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses.Neuron,5, 773–779.PubMedGoogle Scholar
  107. Robitaille, R., Garcia, M. L., Kaczorowski, G. J. and Charlton, M. P. (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release.Neuron,11, 645–655.PubMedGoogle Scholar
  108. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989)Molecular Cloning, 2nd ed. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  109. Sherman, R. G. and Atwood, H. L. (1971) Synaptic facilitation: long-term neuromuscular facilitation in crustaceans.Science,171, 1248–1250.PubMedGoogle Scholar
  110. Shupliakov, O., Atwood, H. L., Ottersen, O. P., Storm-Mathisen, J. and Brodin, L. (1995) Presynaptic glutamate levels in tonic and phasic motor axons correlate with properties of synaptic release.J. Neurosci.,15, 7168–7180.PubMedGoogle Scholar
  111. Smith, B. R., Wojtowicz, J. M. and Atwood, H. L. (1991) Maximum likelihood estimation of non-uniform transmitter release probabilities at the crayfish neuromuscular junction.J. Theor. Biol.,150, 457–472.PubMedGoogle Scholar
  112. Smith, S. J., Buchanan, J., Osses, L. R., Charlton, M. P. and Augustine, G. J. (1993) The spatial distribution of calcium signals in squid presynaptic terminals.J. Physiol. (Lond.),472, 573–593.Google Scholar
  113. Sotelo, C. (1978) Purkinje cell ontogeny: formation and maintenance of spines. Prog. Brain Res.,48, 149–170.PubMedGoogle Scholar
  114. Stewart, B. A. and Atwood, H. L. (1992) Synaptic plasticity in a regenerated crayfish phasic motoneuron.J. Neurobiol.,23, 881–889.PubMedGoogle Scholar
  115. Sucher, N. J. and Deitcher, D. L. (1995) PCR and patch-clamp analysis of single neurons.Neuron,14, 1095–1100.PubMedGoogle Scholar
  116. Swain, J. E., Robitaille, R., Dass, G. R. and Charlton, M. P. (1991) Phosphatases modulate transmission and serotonin facilitation at synapses: studies with the inhibitor okadaic acid.J. Neurobiol.,22, 855–864.PubMedGoogle Scholar
  117. Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D. and Eberwine, J. H. (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA.Proc. Natl. Acad. Sci. USA,87, 1663–1667.PubMedGoogle Scholar
  118. Van Raay, T. J. and Crease, T. J. (1994) Partial mitochondrial DNA sequence of the crustaceanDaphnia pulex.Curr. Genet.,25, 66–72.PubMedGoogle Scholar
  119. Walrond, J. P. and Reese, T. S. (1985) Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers.J. Neurosci.,5, 1118–1131.PubMedGoogle Scholar
  120. Walrond, J. P., Govind, C. K. and Heustis, S. (1993) Two structural adaptations for regulating transmitter release at lobster neuromuscular synapses.J. Neurosci.,13, 4831–4845.PubMedGoogle Scholar
  121. Wernig, A. (1972) Changes in statistical parameters during facilitation at the crayfish neuromuscular junction.J. Physiol. (Lond.),226, 751–759.Google Scholar
  122. Wernig, A. (1975) Estimates of statistical release parameters from crayfish and frog neuromuscular junctions.J. Physiol. (Lond.),244, 207–221.Google Scholar
  123. Wiersma, C. A. G. (1961) The neuromuscular system. InThe Physiology of Crustacea, Vol. 2, ed. T. H. Waterman, pp. 191–240. New York: Academic Press.Google Scholar
  124. Winslow, J. L., Duffy, S. N. and Charlton, M. P. (1994) Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses.J. Neurophysiol.,72, 1769–1793.PubMedGoogle Scholar
  125. Wojtowicz, J. M. and Atwood, H. L. (1986) Long-term facilitation alters transmitter releasing properties at the crayfish neuromuscular junction.J. Neurophysiol.,55, 484–498.PubMedGoogle Scholar
  126. Wojtowicz, J. M. and Atwood, H. L. (1988) Presynaptic long-term facilitation at the crayfish neuromuscular junction: voltage-dependent and ion-dependent phases.J. Neurosci.,8, 4667–4674.PubMedGoogle Scholar
  127. Wojtowicz, J. M., Parnas, I., Parnas, H. and Atwood, H. L. (1988) Long-term facilitation of synaptic transmission demonstrated with macro-patch recording at the crayfish neuromuscular junction,Neurosci. Lett.,90, 152–158.PubMedGoogle Scholar
  128. Wojtowicz, J. M., Marin, L. and Atwood, H. L. (1989) Synaptic restructuring during long-term facilitation at the crayfish neuromuscular junction.Can. J. Physiol. Pharmacol.,67, 167–171.PubMedGoogle Scholar
  129. Wojtowicz, J. M., Marin, L. and Atwood, H. L. (1994) Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction.J. Neurosci.,14, 3688–3702.PubMedGoogle Scholar
  130. Zucker, R. S. (1974a) Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses.J. Physiol. (Lond.),241, 69–89.Google Scholar
  131. Zucker, R. S. (1974b) Excitability changes in crayfish motor neurone terminals.J. Physiol. (Lond.),241, 111–126.Google Scholar
  132. Zucker, R. S. and Bruner, J. (1977) Long-lasting depression and the depletion hypothesis at crayfish neuromuscular junctions.J. Comp. Physiol.,121, 223–240.Google Scholar
  133. Zucker, R. S. and Lara-Estrella, L. O. (1983) Post-tetanic decay of evoked and spontaneous transmitter release and a residual-calcium model of synaptic facilitation at crayfish neuromuscular junctions.J. Gen. Physiol.,81, 355–372.PubMedGoogle Scholar
  134. Zucker, R. S., Delaney, K. R., Mulkey, R. and Tank, D. W. (1991) Presynaptic calcium in transmitter release and posttetanic potentiation.Ann. NY Acad. Sci.,635, 191–207.PubMedGoogle Scholar

Copyright information

© Sheffield Academic Press 1996

Authors and Affiliations

  • H. L. Atwood
    • 1
  • R. L. Cooper
    • 1
  1. 1.Department of Physiology, Medical Sciences Building, MRC Neural GroupUniversity of TorontoTorontoCanada

Personalised recommendations