The Journal of Membrane Biology

, Volume 100, Issue 1, pp 21–29 | Cite as

Mechanism of sugar transport through the sugar-specific LamB channel ofEscherichia coli outer membrane

  • Roland Benz
  • Angela Schmid
  • Greetje H. Vos-Scheperkeuter


Lipid bilayer experiments were performed with the sugar-specific LamB (maltoporin) channel ofEscherichia coli outer membrane. Single-channel analysis of the conductance steps caused by LamB showed that there was a linear relationship between the salt concentration in the aqueous phase and the channel conductance, indicating only small or no binding between the ions and the channel interior. The total or the partial blockage of the ion movement through the LamB channel was not dependent on the ion concentration in the aqueous phase. Both results allowed the investigation of the sugar binding in more detail, and the stability constants of the binding of a large variety of sugars to the binding site inside the channel were calculated from titration experiments of the membrane conductance with the sugars. The channel was highly cation selective, both in the presence and absence of sugars, which may be explained by the existence of carbonyl groups inside the channel. These carbonyl groups may also be involved in the sugar binding via hydrogen bonds. The kinetics of the sugar transport through the LamB channel were estimated relative to maltose by assuming a simple one-site, two-barrier model from the relative rates of permeation taken from M. Luckey and H. Nikaido (Proc. Natl. Acad. Sci. USA77:165–171 (1980a)) and the stability constants for the sugar binding given in this study.

Key Words

LamB maltoporin lipid bilayer sugar transport transport mechanism membrane channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benz, R. 1985. Porins from bacterial and mitochondrial outer membranes.CRC Crit. Rev. Biochem. 19:145–190PubMedGoogle Scholar
  2. Benz, R., Hancock, R.E.W. 1981. Properties of the large ion-permeable pores formed from protein F ofPseudomonas aeruginosa in lipid bilayer membranes.Biochim. Biophys. Acta 646:298–308PubMedGoogle Scholar
  3. Benz, R., Hancock, R.E.W. 1987. Mechanism of ion transport through the anion-selective channel ofPseudomonas aeruginosa outer membrane.J. Gen. Physiol. 89:275–295PubMedGoogle Scholar
  4. Benz, R., Janko, K., Boos, W., Läuger, P. 1978. Formation of large, ion-permeable membrane channels by the matrix protein (porin) ofEscherichia coli.Biochim. Biophys. Acta 511:305–319PubMedGoogle Scholar
  5. Benz, R., Janko, K., Läuger, P. 1979. Ionic selectivity of pores formed by the matrix protein (porin) ofEscherichia coli.Biochim. Biophys. Acta 551:238–247PubMedGoogle Scholar
  6. Benz, R., Ludwig, O., De Pinto, V., Palmieri, F. 1985a. Permeability properties of mitochondrial porins of different eukaryotic cells.In: Achievements and Perspectives of Mitochondrial Research. E. Quagliaello et al., editors. Vol. 1, pp. 317–327, Elsevier, Amsterdam.Google Scholar
  7. Benz, R., Schmid, A., Hancock, R.E.W. 1985b. Ion selectivity of gram-negative bacterial porins.J. Bacteriol. 162:722–727PubMedGoogle Scholar
  8. Benz, R., Schmid, A., Nakae, T., Vos-Scheperkeuter, G. H. 1986. Pore formation by LamB ofEscherichia coli in lipid bilayer membranes.J. Bacteriol. 165:978–986PubMedGoogle Scholar
  9. Benz, R., Tokunaga, H., Nakae, T. 1984. Properties of chemically modified porin fromEscherichia coli in lipid bilayer membranes.Biochim. Biophys. Acta 769:348–356PubMedGoogle Scholar
  10. Crane, R.K. 1960. Intestinal absorption of sugars.Physiol. Rev. 40:789–825PubMedGoogle Scholar
  11. Eisenman, G. 1965. Some elementary factors involved in specific ion permeation. Proceedings of the XXIIIrd International Congress of Physiological Sciences (Tokyo).87:489–506Google Scholar
  12. Ferenci, T., Lee, K.-S. 1982. Directed evolution of the lambda receptor ofEscherichia coli through affinity chromatographic selection.J. Mol. Biol. 160:431–444PubMedGoogle Scholar
  13. Ferenci, T., Schwentorat, M., Ullrich, S., Vilmart, J. 1980. Lambda receptor in the outer membrane ofEscherichia coli as a binding protein for maltodextrins and starch polysaccharides.J. Bacteriol. 142:521–526PubMedGoogle Scholar
  14. Finkelstein, A., Anderson, O.S. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport.J. Membrane Biol. 59:155–171Google Scholar
  15. Hancock, R.E.W. 1987. Role of porins in outer membrane permeability.J. Bacteriol. 169:929–933PubMedGoogle Scholar
  16. Hancock, R.E.W., Poole, K., Benz, R. 1982. Outer membrane protein P ofPseudomonas aeruginosa: Regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes.J. Bacteriol. 150:730–738PubMedGoogle Scholar
  17. Heine, H.-G., Kyngdon, J., Ferenci, T. 1987. Sequence determinants in the LamB gene ofEscherichia coli influencing the binding and pore selectivity of maltoporin.Gene 53:287–292PubMedGoogle Scholar
  18. Kimmich, G.A. 1973. Coupling between Na+ and sugar transport in small intestine.Biochim. Biophys. Acta 300:31–78PubMedGoogle Scholar
  19. Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30Google Scholar
  20. Läuger, P. 1973. Ion transport through pores: A rate-theory analysis.Biochim. Biophys. Acta 311:423–441PubMedGoogle Scholar
  21. Lieb, W.R., Stein, W.D. 1974. Testing and characterizing the simple pore.Biochim. Biophys. Acta 373:165–177PubMedGoogle Scholar
  22. Luckey, M., Nikaido, H. 1980a. Specificity of diffusion channels produced by λ-phase receptor protein ofEscherichia coli.Proc. Natl. Acad. Sci. USA 77:165–171Google Scholar
  23. Luckey, M., Nikaido, H. 1980b. Diffusion of solutes through channels produced by phage lambda receptor protein ofEscherichia coli: Inhibition of glucose transport by higher oligosaccharides of maltose series.Biochem. Biophys. Res. Commun. 93:166–171PubMedGoogle Scholar
  24. Maier, C., Bremer, E., Schmid, A., Benz, R. 1987. Pore-forming activity of the Tsx protein from the outer membrane ofEscherichia coli. Demonstration of a nucleoside-specific binding site.J. Biol. Chem. (in press) Google Scholar
  25. Meyenburg, K. von, Nikaido, H. 1977. Outer membrane of gram-negative bacteria: XVII. Specificity of transport process catalyzed by the λ-receptor protein inEscherichia coli.Biochem. Biophys. Res. Commun. 78:1100–1107PubMedGoogle Scholar
  26. Nakae, T. 1976. Identification of the major outer membrane protein ofEscherichia coli that produces transmembrane channels in reconstituted vesicle membranes.Biochem. Biophys. Res. Commun. 71:877–884PubMedGoogle Scholar
  27. Nakae, T., Ishii, J., Ferenci, T. 1986. The role of maltodextrin binding site in determining the transport properties of maltoporin.J. Biol. Chem. 261:622–626PubMedGoogle Scholar
  28. Nikaido, H., Rosenberg, E.Y. 1983. Porin channels inEscherichia coli: Studies with liposomes reconstituted from purified proteins.J. Bacteriol. 153:241–252PubMedGoogle Scholar
  29. Nikaido, H., Vaara, M. 1985. Molecular basis of bacterial outer membrane permeability.Microbiol. Rev. 49:1–32PubMedGoogle Scholar
  30. Okada, Y., Tsuchiya, W., Irimajiri, A., Inouye, A. 1977. Electrical properties and active solute transport in rat small intestine: I. Potential profile changes associated with sugar and amino acid transport.J. Membrane Biol. 31:205–219Google Scholar
  31. Palva, E.T. 1978. Major outer membrane protein inSalmonella typhimvorium induced by maltose.J. Bacteriol. 136:286–294PubMedGoogle Scholar
  32. Smelcman, S., Hofnung, M. 1975. Maltose transport inEscherichia coli K-12: Involvement of the bacteriophage lambda receptor.J. Bacteriol. 124:112–118PubMedGoogle Scholar
  33. Vos-Scheperkeuter, G.H., Hofnung, M., Witholt, B. 1984. High-sensitivity detection of newly induced LamB protein on theEscherichia coli cell surface.J. Bacteriol. 159:435–439PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Roland Benz
    • 1
  • Angela Schmid
    • 1
  • Greetje H. Vos-Scheperkeuter
    • 2
  1. 1.Lehrstuhl für Biotechnologie der Universität WürzburgWürzburgFederal Republic of Germany
  2. 2.Laboratory of BiochemistryState University of GroningenGroningenThe Netherlands

Personalised recommendations