Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Changes in specific photosynthetic rate of oceanic phytoplankton from the northeast Pacific Ocean

  • 437 Accesses

  • 2 Citations


The study is based on data (n=244) from light-saturation experiments utilizing artificial incubation under fluorescent light. Values of maximum photosynthetic rate,P max, and the light intensity at which it takes place,I max, are estimated by non-linear regression using stepwise Gauss-Newton iterations. Estimated values ofP max ranged from 0.85 to 5.48 mg C (mg Chla·h)−1;I max varied from 2.35 to 5.52 cal (cm2·h)−1. The effects of time (months) and depth (illumination levels) and their interaction are evaluated by analysis of covariance using a linear model. A significant time-depth interaction is noted: The maximum specific primary productivity occurred in the surface layers during March, at the 50% light level during April, and at 1% level during May. Estimates ofP max from simulated in situ primary productivity experiments for the same period are lower than those from light-saturation experiments. A comparison of data from light-saturation and simulated in situ experiments indicated that effects of duration of experiments and the quality of available light may affect primary productivity data considerably.

Literature Cited

  1. Anderson, G. C., 1964. The seasonal and geographic distribution of primary productivity off the Washington and Oregon coasts. Limnol. Oceanogr.9, 284–302.

  2. — 1972. Aspects of marine phytoplankton studies near the Columbia River, with special reference to a sub-surface chlorophyll maximum. In: The Columbia River estuary and adjacent ocean waters: bioenvironmental studies. Ed. by A. T. Pruter & D. L. Alverson. Univ. of Washington Press, Seattle, 219–240.

  3. —, & Zeutschel, R. P., 1970. Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the northeast Pacific Ocean. Limnol. Oceanogr.15, 402–407.

  4. Bannister, T. T., 1974. Production equations in terms of chlorophyll concentrations, quantum yield, and upper limit to production. Limnol. Oceanogr.19, 1–12.

  5. Banse, K., & Anderson, G. C., 1967. Computation of chlorophyll concentration from spectrophotometric readings. Limnol. Oceanogr.12, 696–697.

  6. Barnes, C. A., Duxbury, A. C. & Morse, B. A., 1972. Circulation and selected properties of the Columbia River effluent at sea. In: The Columbia River estuary and adjacent ocean waters: bioenvironmental studies. Ed. by A. T. Pruter & D. L. Alverson. Univ. of Washington Press, Seattle, 41–80.

  7. Creitz, G. I. & Richards, F. A., 1955. The estimation and characterization of plankton populations by pigment analyses. III. A note on the use of “Millipore” membrane filters in the estimation of plankton pigments. J. mar. Res.14, 211–216.

  8. Curl, H. Jr & Small, L. F., 1965. Variations in photosynthetic assimilation ratios in natural marine phytoplankton communities. Limnol. Oceanogr.10 (Suppl.), R67-R73.

  9. Dixon, W. J. (Ed.), 1970. BMD-Biomedical computer programs, X-series supplement. University of California Press, Los Angeles, 260 pp. (Univ. Calif. Publs Automatic Computation3.)

  10. Dunstan, W. M., 1973. A comparison of the photosynthesis-light intensity relationship in phylogenetically different marine microalgae. J. exp. mar. Biol. Ecol.13, 181–187.

  11. Glooschenko, W. A., Curl, H Jr. & Small, L. F., 1972. Diel periodicity of chlorophyll α concentration in Oregon coastal waters. J. Fish. Res. Bd Can.29, 1253–1259.

  12. Hameedi, M. J., 1974. Ouantitative studies of phytoplankton and zooplankton and their interrelationships off Washington and Oregon. Ph. D. Diss., Univ. Washington, Seattle, 287 pp.

  13. —, 1976. An evaluation of the effects of environmental variables on marine plankton primary productivity by multivariate regression. Int. Revue ges. Hydrobiol.61, 519–540.

  14. Harris, G. P. & Lott, I. N. A., 1973. Light intensity and photosynthetic rates in phytoplankton. J. Fish. Res. Bd Can.30, 1771–1778.

  15. Hartley, H. O., 1961. The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares. Technometrics3, 269–280.

  16. Jassby, A. D. & Platt, T., 1976. Mathematical formulation of the relationship between photosynthesis and light for plankton. Limnol. Oceanogr.21, 540–547.

  17. Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology23, 399–418.

  18. Nihoul, J. C. J., 1975. Application of mathematical models to the study, monitoring and management of the North Sea. In: Ecological modeling. Resources of the Future, Inc., Washington, D. C., 135–147.

  19. Richards, F. A. & Thompson, T. G., 1952. The estimation and characterization of plankton populations by pigment analysis. II. A spectrophotometric method for the estimation of plankton pigments. J. mar. Res.11, 156–172.

  20. Ryther, J. G., 1956. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr.1, 61–70.

  21. — & Menzel, D. M., 1959. Light adaptation by marine phytoplankton. Limnol. Oceanogr.4, 492–497.

  22. — & Yentsch, C. S., 1957. The estimation of phytoplankton production in the oceans from chlorophyll and light data. Limnol. Oceanogr.2, 281–286.

  23. Small, L. F., Curl, H. Jr. & Glooschenko, W. A., 1972. Estimates of primary production off Oregon using an improved chlorophyll-light technique. J. Fish. Res. Bd Can.29, 1261–1267.

  24. Sokal, R. R. & Rohlf, F. J., 1969. Biometry. Freeman, San Francisco, 776 pp.

  25. Steele, J. H., 1962. Environmental control of photosynthesis at sea. Limnol. Oceanogr.7, 137–150.

  26. — & Baird, I. E., 1961. Relation between primary production, chlorophyll, and particutlate carbon. Limnol. Oceanogr.6, 68–78.

  27. Steemann Nielsen, E., 1962. Inactivation of photochemical mechanism in photosynthesis. Physiologia Pl.15, 161–171.

  28. —, 1965. On the determination of the activity in14Carbon-ampoules for measuring primary production. Limnol. Oceanogr.10, 247–252.

  29. — & Willemöes, M., 1971. How to measure the illumination rate when investigating the rate of photosynthesis of unicellular alga under various light conditions. Int. Revue ges. Hydrobiol.56, 541–556.

  30. Stevenson, M. M., Schnell, G. D. & Black, R., 1974. Factor analysis of fish distribution patterns in western and central Oklahoma. Syst. Zool.23, 202–218.

  31. Strickland, J. D. H., 1960. Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd Can.122, 1–172.

  32. —, 1965. Production of organic matter in the primary stages of the marine food chain. Chemical oceanography. Ed. by J. P. Riley & G. Skirrow. Acad. Press, London,1, 477–610.

  33. Taguchi, S., 1972. Mathematical analysis of primary production in the Bering Sea. In: Biological oceanography of the northern North Pacific Ocean. Ed. by A. Y. Takenouti. Idemitsu Shoten, Tokyo, 253–262.

  34. Talling, J. F., 1960. Comparative laboratory and field studies of photosynthesis by a marine planktonic diatom. Limnol. Oceanogr.5, 62–77.

  35. Unesco (Editor). Determination of photosynthetic pigments, 1966. Unesco, Paris, 69 pp. (Monographs on oceanographic methodology. 1.)

  36. Vinogradov, M. E., Menshutkin, V. V. & Shushkina, E. A., 1972. On mathematical simulation of a pelagic ecosystem. Mar. Biol.16, 261–268.

  37. Vollenweider, R. A., 1965. Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. Memorie Ist. ital. Idrobiol.18 (Suppl.), 425–457.

  38. Wallen, D. G. and Geen, G. H., 1971. The nature of the photosynthate in natural phytoplankton populations in relation to light intensity. Mar. Biol.10, 157–168.

  39. Walsh, J. J. & Dugdale, R. C., 1972. Nutrient submodels and simulation models of phytoplankton production in the sea. In: Nutrients in natural waters. Ed. by H. E. Allen & J. R. Kramer. Wiley, New York, 171–191.

  40. Wikum, D. A. & Wali, M. K., 1974. Analysis of a North Dakota gallery forest: vegetation in relation to topographic and soil gradients. Ecol. Monogr.44, 441–464.

  41. Winter, D. F., Banse, K. & Anderson, G. C., 1975. The dynamics of phytoplankton blooms in Puget Sound, a fiord of the northwestern United States. Mar. Biol.29, 139–176.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hameedi, M.J. Changes in specific photosynthetic rate of oceanic phytoplankton from the northeast Pacific Ocean. Helgolander Wiss. Meeresunters 30, 62–75 (1977). https://doi.org/10.1007/BF02207825

Download citation


  • Waste Water
  • Covariance
  • Phytoplankton
  • Pacific Ocean
  • Photosynthetic Rate