Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

New results in the theory of multivalued mappings. I. Topological characteristics and solvability of operator relations

  • 197 Accesses

  • 3 Citations

Abstract

The first part of the survey describes the fundamental results in the theory of multivalued mappings, obtained during the period 1981–1986. The survey contains a description of fixed-point and coincidence theorems for various classes of multivalued mappings, generalizing a series of classical results. Results on the theory of the topological degree of multivalued mappings are also given.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. R. Abdullaev, “On the existence of solutions of nonlinear operator equations,” Perm Polytechnic Inst., Perm (1981). (Manuscript deposited at VINITI, July 16, 1981, No. 3508-81 Dep.)

  2. 2.

    M. A. Aizerman, “The dynamic aspects of voting theory (survey),” Avtomat. Telemekh., No. 12, 103–118 (1981).

  3. 3.

    M. S. Aliev, “On certain closed multivalued mappings,” in: Functional Analysis, Theory of Functions and Their Applications [in Russian], Makhachkala (1985), pp. 36–42.

  4. 4.

    M. S. Aliev, E. B. Veliev, D. R. Gaidarov, F. S. Nasrulaev, and R. K. Ragimkhanov, “Basic facts on topological spaces of closed subsets of a metric space,” Dagestan Univ., Makhachkala (1986). (Manuscript deposited at VINITI, April 8, 1986, No. 2495-B.)

  5. 5.

    M. S. Aliev, E. B. Veliev, D. R. Gaidarov, F. S. Nasrulaev, and R. K. Ragimkhanov, “Elements of the theory of closed-valued semicontinuous, continuous, and closed multivalued mappings,” Dagestan Univ., Makhachkala (1986). (Manuscript deposited at VINITI, June 17, 1986, No. 4442-B.)

  6. 6.

    V. A. Alyakin, “On the decomposition of multivalued set functions,” in: Functional Analysis. Theory of Operators [in Russian], Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk (1981), pp. 3–9.

  7. 7.

    B. I. Anan'ev and I. B. Baisakalov, “On the existence of the solution of stochastic differential inclusions of a special form,” in: Estimation under Conditions of Uncertainty [in Russian], Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk (1982), pp, 10–18.

  8. 8.

    L. Yu. Anapol'skii, “On the stability of differential inclusions,” Differents. Uravn.,19, No. 4, 555–564 (1983).

  9. 9.

    L. Yu. Anapol'skii, “On periodic integral manifolds of relay inclusions,” in: Method of Lyapunov Functions in the Dynamics of Nonlinear Systems [in Russian], Nauka, Novosibirsk (1983), pp. 26–84.

  10. 10.

    L. Yu. Anapol'skii, “On periodic integral manifolds of relay systems with hysteresis,” in: Ninth Internat. Conf. on Nonlinear Oscillations (Kiev, Aug. 30-Sep. 6, 1981), Vol. 2, Kiev (1984), pp. 18–21.

  11. 11.

    R. A. Angelov and S. M. Markov, “On the existence of solutions of interval differential equations and inclusions,” in: Mathematics and Mathematical Education (Slnchev Bryag, 1981), Sofia (1981), pp. 36–101.

  12. 12.

    V. V. Arestov, “The approximation of invariant operators,” Mat. Zametki,34, No. 1, 9–29 (1983).

  13. 13.

    S. M. Aseev, “The approximation of semicontinuous multivalued mappings by continuous ones,” Izv. Akad. Nauk SSSR, Ser. Mat.,46, No. 3, 460–476 (1982).

  14. 14.

    S. M. Aseev, “The existence of a differentiable single-valued branch of a multivalued mapping,” in: Some Questions of Applied Mathematics and Software [in Russian], Moscow (1982), pp. 36–39.

  15. 15.

    S. M. Aseev, “Quasilinear operators and their application to the theory of multivalued mappings,” Trudy Mat. Inst. Akad. Nauk SSSR,167, 25–52 (1985).

  16. 16.

    A. V. Babichev, A. G. Butkovskii, and N. L. Lepe, “singular sets on phase portraits of dynamical systems with control. I,” Avtomat. Telemekh., No. 5, 24–31 (1986).

  17. 17.

    L. E. Bazilevich, “On the selection of the distance function to a compactum,” Visnik L'viv Univ. Ser. Mat. Mekh., No. 24, 54–59 (1985).

  18. 18.

    V. A. Baidosov, “On an approach to the definition of dynamical games in terms of generalized dynamical systems,” in: Optimal Control of Systems with Uncertain Information [in Russian], Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Inst. Mat. i Mekh., Sverdlovsk (1980), pp. 3–11.

  19. 19.

    E. I. Balaban, “On the approximate calculation of the Riemann integral of a multivalued mapping,” Zh. Vychisl. Mat. Mat. Fiz.,22, No. 2, 472–476 (1982).

  20. 20.

    E. I. Balaban, “On a problem in the theory of integration of set-valued mappings arising in connection with applications of the first direct method of L. S. Pontryagin in differential games,” in: Multistep, Differential, Noncooperative and Cooperative Games and Their Applications [in Russian], Kalinin. Gos. Univ., Kalinin (1982), pp. 3–18.

  21. 21.

    V. S. Balaganskii, “The weak continuity of the metric projection onto bounded sets in Banach spaces,” Mat. Zametki,32, No. 5, 627–637 (1982).

  22. 22.

    S. B. Barabash, “On the continuity of an ε-subdifferential mapping,” in: Mathematical Analysis of Models of Territorial Production Systems [in Russian], Nauka, Novosibirsk (1984), pp. 110–119.

  23. 23.

    O. Ya. Benderskii and B. A. Rubshtein, “Measurable fields of closed sets,” in: Materials of the Scientific Conference of Young Scientists of the Institute of Mathematics, Academy of Sciences of the UzSSR, Tashkent, Dec. 21, 1984, Tashkent (1985), pp. 9–11. (Manuscript deposited at VINITI, Dec. 19, 1985, No. 8756-B Dep.)

  24. 24.

    N. Benkafadar, “On the solvability of a certain class of integral inclusions,” Voronezh Univ., Voronezh (1982). (Manuscript deposited at VINITI, Aug. 3, 1982, No. 4210-82 Dep.)

  25. 25.

    N. Benkafadar and B. D. Gel'man, “On the quasidegrees of partially invertible multivalued vector fields,” Voronezh Univ., Voronezh (1981). (Manuscript deposited at VINITI, Feb. 18, 1982, No. 736-82 Dep.)

  26. 26.

    N. Benkafadar and B. D. Gel'man, “On the local degree of multivalued vector fields with Fredholm principal part,” Voronezh Univ., Voronezh (1982). (Manuscript deposited at VINITI, July 1, 1982, No. 3422-82 Dep.)

  27. 27.

    N. Benkafadar and B. D. Gel'man, “On homotopic properties of spaces of subsets,” in: Topological and Geometrical Methods in Mathematical Physics [in Russian], Voronezh (1983), pp. 111–115.

  28. 28.

    V. I. Berdyshev, “The metric projection onto the class H(Ω),” Dokl. Akad. Nauk SSSR,266, No. 4, 777–779 (1982).

  29. 29.

    V. I. Berdyshev, “Differential properties of the metric projection,” in: Constructive Function Theory '81 (Varna 1981), Bulgar. Acad. Sci., Sofia (1983), pp. 34–37.

  30. 30.

    V. I. Berdyshev, “The stability of the element of best approximation,” in: Theory of Functions and Applications. Proceedings Saratov winter School, 1982, Part I, Saratov (1983), pp. 120–127.

  31. 31.

    V. I. Berdyshev, “Differentiability of the metric projection in a normed space,” in: Approximation of Functions by Polynomials and Splines [in Russian], Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk (1985), pp. 58–71.

  32. 32.

    V. I. Blagodatskikh, “The maximum principle for differential inclusions,” Trudy Mat. Inst. Akad. Nauk SSSR,166, 23–43 (1984).

  33. 33.

    V. I. Blagodatskikh and A. F. Filippov, “Differential inclusions and optimal control,” Trudy Mat. Inst. Akad. Nauk SSSR,169, 194–252 (1985).

  34. 34.

    A. V. Bogatyrev, “Continuous branches of multivalued mappings with nonconvex right-hand side,” Mat. Sb.,120 (162), No. 3, 344–353 (1983).

  35. 35.

    A. V. Bogatyrev, “Fixed points and properties of solutions of differential inclusions,” Izv. Akad. Nauk SSSR, Ser. Mat.,47, No. 4, 895–909 (1983).

  36. 36.

    V. G. Boltyanskii, “The problem of optimization with change of phase space,” Differents. Uravn.,19, No. 3, 518–521 (1983).

  37. 37.

    V. G. Bondarevskii and O. F. Borisenko, “Conditions for the optimality of diference inclusions and discrete control systems with mixed constraints,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1982). (Manuscript deposited at VINITI, Aug. 4, 1983, No. 4301-83 Dep.)

  38. 38.

    V. G. Bondarevskii, O. F. Borisenko, and L. I. Minchenko, “On the properties of the maximum function on differentiable multivalued mappings,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1983). (Manuscript deposited at VINITI, Nov. 23, 1983, No. 6214-83 Dep.)

  39. 39.

    V. G. Bondarevskii and L. I. Minchenko, “On the properties of differentiable multivalued mappings,” Kibernetika, No. 2, 77–79 (1986).

  40. 40.

    O. F. Borisenko and L. I. Minchenko, “On weakly uniform differentiable functions and multivalued mappings,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1985). (Manuscript deposited at VINITI, Mar. 19, 1985, No. 1943-85 Dep.)

  41. 41.

    O. F. Borisenko and L. I. Minchenko, “Minimax conditions for problems with linear constraints,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1985). (Manuscript deposited at VINITI, May 4, 1985, No. 2918-85 Dep.)

  42. 42.

    Yu. G. Borisovich, “Global analysis and some problems for differential equations,” in: Differential Equations and Applications, Part I [in Russian], Tech. Univ., Ruse (1982), pp. 98–118.

  43. 43.

    Yu. G. Borisovich, “On the solvability of nonlinear equations with Fredholm operators,” in: Geometry and Topology in Global Nonlinear Problems [in Russian], Voronezh State Univ., Voronezh (1984), pp. 3–22.

  44. 44.

    Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, “Topological methods in the theory of fixed points of multivalued mappings,” Usp. Mat. Nauk,35, No. 1 (211), 59–126 (1980).

  45. 45.

    Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, “Multivalued mappings,” Itogi Nauki i Tekhniki, Ser. Mat. Analiz,19, 127–230 (1982).

  46. 46.

    Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, “Multivalued analysis and operator inclusions,” Itogi Nauki i Tekhniki, Ser. Sov. Probl. Mat. Noveishie Dostizheniya,29, 151–211 (1986).

  47. 47.

    Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the Theory of Multivalued Mappings [in Russian], Voronezh Univ., Voronezh (1986).

  48. 48.

    Yu. G. Borisovich and M. N. Krein, “On the topological degree of semidifferentiable Fredholm mappings with perturbations,” Voronezh Univ., Voronezh (1984). (Manuscript deposited at VINITI, Sep. 24, 1984, No. 6384-84 Dep.)

  49. 49.

    I. U. Bronshtein and A. Ya. Kopanskii, “Chain recurrence in dispersive dynamical systems. I,” Mat. Issled., No. 77, 3–12 (1984).

  50. 50.

    I. U. Bronshtein and A. Ya. Kopanskii, “Chain recurrence in dispersive dynamical systems. II,” Mat. Issled., No. 80, 32–47 (1985).

  51. 51.

    S. A. Brykalov, “The existence of solutions of boundary value problems for functional-differential inclusions,” Ural Univ., Sverdlovsk (1982). (Manuscript deposited at VINITI, July 8, 1982, No. 3633-82 Dep.)

  52. 52.

    S. A. Brykalov, “Boundary value problems for functional-differential inclusions,” Dokl. Akad. Nauk SSSR,266, No. 4, 784–787 (1982).

  53. 53.

    S. A. Brykalov, “Some boundary value problems for differential equations and inclusions,” Dokl. Akad. Nauk SSSR,279, No. 2, 277–280 (1984).

  54. 54.

    A. I. Bulgakov, “Functional-differential inclusions with a nonconvex right-hand side,” in: Boundary Value Problems [in Russian], Perm (1985), pp. 65–69.

  55. 55.

    A. I. Bulgakov and L. N. Lyapin, “On the connectedness of sets of solutions of inclusions with a Volterra operator,” in: Boundary Value Problems [in Russian], Perm (1980), pp. 146–149.

  56. 56.

    A. I. Bulgakov and L. N. Lyapin, “On the connectedness of sets of solutions of functional inclusions,” Mat. Sb.,119 (161), No. 2, 295–300 (1982).

  57. 57.

    A. I. Bulgakov and V. P. Maksimov, “Functional and functional-differential inclusions with Volterra operators,” Differents. Uravn.,17, No. 8, 1362–1374 (1981).

  58. 58.

    A. G. Butkovskii, “A differential-geometric method for the constructive solution of controllability and finite control problems,” Avtomat. Telemekh., No. 1, 5–18 (1982).

  59. 59.

    A. G. Butkovskii, “The method of integral funnels of differential inclusions for investigating control systems,” Differents. Uravn.,21, No. 8, 1304–1313 (1985).

  60. 60.

    A. G. Butkovskii, “Theory and method of the phase portrait of dynamical systems with control,” Avtomat. Telemekh., No. 12, 43–53 (1985).

  61. 61.

    G. M. Vainikko, “On the invariance of rotation of vector fields in the approximation of multivalued mappings,” Uch. Zap. Tart. Univ., No. 633, 3–10 (1983).

  62. 62.

    A. B. Vasil'ev, “On the continuous parameter dependence of solutions of differential inclusions,” Ukr. Mat. Zh.,35, No. 5, 607–611 (1983).

  63. 63.

    E. B. Veliev, “On conditions of existence theorems of certain integral inclusions,” Dagestan Univ., Makhachkala (1981). (Manuscript deposited at VINITI, Jan. 29, 1982, No. 421-82 Dep.)

  64. 64.

    A. N. Vityuk, “On the existence of solutions of the Goursat problem for hyperbolic partial differential inclusions,” Odessa Univ., Odessa (1982). (Manuscript deposited at VINITI, Dec. 8, 1982, No. 5982-82 Dep.)

  65. 65.

    A. N. Vityuk, “On a class of partial differential equations with multivalued solutions,” Odessa Univ., Odessa (1983). (Manuscript deposited at UkrNIINTI, Apr. 18, 1985. No. 751 Uk-85 Dep.)

  66. 66.

    A. N. Vityuk, “On the existence of solutions of a certain class of multivalued partial differential equations,” in: Boundary Value Problems [in Russian], Perm (1984), pp. 131–133.

  67. 67.

    D. R. Gaidarov and R. H. Ragimkhanov, “Multivalued integral mappings for single-valued vector-functions and some of their properties in the space of continuousn-dimensional vector functions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 71–72 (1981).

  68. 68.

    D. R. Gaidarov and R. K. Ragimkhanov, “Some properties of multivalued integral mappings in the space of continuousn-dimensional vector functions,” in: Functional Analysis, Theory of Functions and Their Applications [in Russian], Makhachkala (1982), pp. 39–50.

  69. 69.

    D. R. Gaidarov and R. K. Ragimkhanov, “On topological spaces of closed subsets and convergence relations in them,” Dagestan Univ., Makhachkala (1985). (Manuscript deposited at VINITI, Jan. 7, 1986, No. 135-B.)

  70. 70.

    V. G. Gaitsgori, “On the use of the averaging method for the construction of suboptimal solutions of singularly perturbed optimal control problems,” Avtomat. Telemekh., No. 9, 22–30 (1985).

  71. 71.

    I. V. Gaishun, “On a class of multivalued mappings of a metric space,” Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, No. 3, 14–18 (1984).

  72. 72.

    B. D. Gel'man, “On certain classes of sections of multivalued mappings,” in: Application of Topology to Modern Analysis [in Russian], Voronezh (1985), pp. 42–62.

  73. 73.

    B. D. Gel'man and Yu. E. Gliklikh, “The multivalued Ito integral,” in: Approximate Methods for the Investigation of Differential Equations and Their Applications [in Russian], Kuibyshev (1984), pp. 46–54.

  74. 74.

    P. I. Ginailo, “Necessary conditions for an extremum for differential inclusions in the optimal control problem with continuous time,” Kiev Univ., Kiev (1986). (Manuscript deposited at UkrNIINTI, Jan. 3, 1986, No. 140-Uk.)

  75. 75.

    V. I. Golov, “Hubert space as a hyperspace of ordered arcs,” in: Functional Analysis and Its Applications in Mechanics and Probability Theory [in Russian], Moscow State Univ. (1984), pp. 13–18.

  76. 76.

    L. N. Gurvits and A. M. Zakharin, “Transformation of phase spaces of generalized semigroup systems,” Kibernet. Vychisl. Tekh., No. 58, 45–50 (1983).

  77. 77.

    V. I. Gurman and G. N. Konstantinov, “Reachability sets of control systems. The relation with Bellman's equation,” Irkutsk Univ., Irkutsk (1981). (Manuscript deposited at VINITI, Aug. 14, 1981, No. 4038-81 Dep.)

  78. 78.

    V. N. Gurov, “Necessary conditions for the extremum of convex differential inclusions with phase constraints,” Mat. Zametki,38, No. 3, 407–416 (1985).

  79. 79.

    Kh. G. Guseinov (H. G. Guseinov) and A. I. Subbotin, “Derivatives of multivalued mappings with applications to game-theoretical problems of control,” Problems Control Inform. Theory / Problemy Upravlen. Teor. Inform.,14, No. 3, 155–167 (1985).

  80. 80.

    S. N. Dement'ev and L. P. Yanovskii, “Some existence theorems for a fixed point of multivalued discontinuous monotone mappings in semiordered spaces,” in: Qualitative and Approximate Methods for the Study of Operator Equations [in Russian], Yaroslavl' (1981), pp. 30–36.

  81. 81.

    A. P. Dmitriev, “Differential inclusions in Banach spaces,” in: Differential Equations [in Russian], Ryazan' (1982), pp. 22–32.

  82. 82.

    A. P. Dmitriev, “Multivalued semicontinuous mappings of Banach spaces,” in: Differential Equations [in Russian], Ryazan' (1982), pp. 32–47.

  83. 83.

    A. P. Dmitriev, “The application of differential inclusions to optimal control theory in the singular case,” in: Differential Equations: Stability Theory [in Russian], Ryazan' (1984), pp. 50–58.

  84. 84.

    A. P. Dmitriev, “Regular inclusions in Banach spaces,” in: Differential Equations [in Russian], Ryazan. Gos. Ped. Inst., Ryazan' (1984), pp. 56–65.

  85. 85.

    Yu. I. Domshlak and G. I. Tamoev, “A vector analogue of the Picone-Hartman-Wintner comparison theorem for operator-partial differential equations and its application to the investigation of ultrahyperbolic equations,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauki, No. 3, 21–26 (1981).

  86. 86.

    Yu. I. Domshlak and L. A. Sheikhzamanova, “A comparison theorem for differential equations and inclusions with deviating argument in a Hilbert space and its application,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauki, No. 1, 23–28 (1980).

  87. 87.

    D. T. Dochev, “Differential antagonistic games with delay and with a vector multivalued payoff function,” in: Mathematics and Mathematical Education (Sl' 'nchev Bryag, 1983), Bulgar. Acad. Sci., Sofia (1983), pp. 46–55.

  88. 88.

    D. T. Dochev, “Slater saddle point in a game with multivalued vector payoff function,” God. Vissh. Uchebn. Zaved., Prilozh. Mat.,18, No. 4, 25–38 (1982).

  89. 89.

    A. N. Dranishnikov, “Absolute extensors in dimensionn andn-soft mappings increasing the dimension,” Usp. Mat. Nauk,39, No. 5, 55–95 (1984).

  90. 90.

    A. N. Dranishnikov, “Multivalued absolute retracts and absolute extensors in dimensions 0 and 1,” Usp. Mat. Nauk,39, No. 5, 241–242 (1984).

  91. 91.

    S. Dubiel, “The controllability of dynamical systems on the basis of the theory of differential inclusions,” in: Ninth Internat. Conf. on Nonlinear Oscillations (Kiev, Aug. 30-Sept. 6, 1981), Vol. 3, Kiev (1984), pp. 101–104.

  92. 92.

    V. I. Zhukovskii and V. S. Molostvov, “On the Pareto optimality in cooperative differential games with multivalued objective functionals,” in: Sb. Tr. VNII Sistem. Issled., No. 6, (1980), pp. 96–108.

  93. 93.

    V. I. Zhukovskii and V. S. Molostvov, “The state of equilibrium in games with multivalued vector payoff functions,” in: Sb. Tr. VNII Sistem. Issled., No. 4, (1981), pp. 47–66.

  94. 94.

    A. Ya. Zaslavskii, “On the existence of a linear selector of a superlinear multivalued mapping,” Mat. Zametki,29, No. 4, 557–566 (1981).

  95. 95.

    A. Ya. Zaslavskii, “Continuous transformations of metric compacta with finite turnpike sets,” Usp. Mat. Nauk,38, No. 5, 185–186 (1983).

  96. 96.

    A. Ya. Zaslavskii, “On measures that are invariant with respect to transformations of metric compacta,” Sib. Mat. Zh.,25, No. 2, 121–131 (1984).

  97. 97.

    A. Ya. Zaslavskii, “On a class of multivalued mappings,” Sib. Mat. Zh.,26, No. 2, 98–101 (1985).

  98. 98.

    Yu. B. Zelinskii, “On the differentiation of multivalued functions,” in: Theory of Functions and Topology, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev (1983), pp. 33–42.

  99. 99.

    A. V. Ivanov, “On an estimate of the modulus of continuity of the generalized solutions of certain singular parabolic equations,” J. Sov. Math.,37, No. 1 (1987).

  100. 100.

    R. Ivanov, P. Henderov, S. Nedev, and G. Skordev, “Multivalued mappings and some of their applications,” in: Mathematics and Mathematical Education (Sl''nchev Bryag, 1982), Sofia (1982), pp. 37–62.

  101. 101.

    A. E. Irisov, “The approximation of periodic solutions of a differential inclusion,” in: Problems of the Modern Theory of Periodic Motions, No. 4 [in Russian], Udmurt. Gos. Univ., Izhevsk. Mekh. Inst., Izhevsk (1980), pp. 13–16.

  102. 102.

    A. E. Irisov, “On the question of the approximation of the periodic solutions of a differential inclusion,” Differents. i Integral. Uravn. (Gorkii), No. 6, 155 (1982).

  103. 103.

    A. E. Irisov, “The continuous dependence of the periodic solutions of a differential inclusion on the right-hand side,” Differents. Uravn.,20, No. 6, 1086–1088 (1984).

  104. 104.

    A. E. Irisov and E. L. Tonkov, “On the closure of the set of periodic solutions of a differential inclusions,” in: Differential and Integral Equations [in Russian], Gorki (1983), pp. 32–38.

  105. 105.

    I. Israilov and S. Otakulov, “On a class of differential inclusions,” Dokl. Akad. Nauk UzSSR, No. 12, 11–12 (1980).

  106. 106.

    I. Israilov and S. Otakulov, “Properties of solutions of differential inclusions and their applications to optimal control problems,” in: Studies in Ordinary Differential Equations [in Russian], Samarkand (1982), pp. 98–105.

  107. 107.

    A. A. Kalmykov, “Theorems of monotone selection,” Perm. Univ., Perm (1982). (Manuscript deposited at VINITI, Jan. 3, 1983, No. 15-83 Dep.)

  108. 108.

    M. R. Karibov, “Monotone multivalued mappings,” in: Boundary Value Problems [in Russian], Perm (1980), pp. 138–142.

  109. 109.

    M. R. Karibov, “The continuous dependence of the solutions of inclusions on the righthand sides,” Perm Polytechnic Inst., Perm (1981). (Manuscript deposited at VINITI, April 13, 1981, No. 1649-81 Dep.)

  110. 110.

    M. R. Karibov, “The existence of solutions of inclusions and their dependence on parameters,” Kalm. Univ, Elista (1984). (Manuscript deposited at VINITI, Aug. 23, 1984, No. 5980-84 Dep.)

  111. 111.

    N. I. Karulina, “Sufficient optimality conditions for differential inclusions,” in: Some Problems of Contemporary Mathematics and Their Application to Problems of Mathematical Physics [in Russian], Moscow (1985), pp. 78–81.

  112. 112.

    S. S. Klimchuk, “On relative estimates in the averaging method for differential inclusions,” Odessa Univ., Odessa (1985). (Manuscript deposited at UkrNIINTI, Sep. 2, 1985, No. 2020-Uk.))

  113. 113.

    Sh. M. Kozhaev, “On periodic solutions of differential equations with a multivalued right-hand side,” in: Mat. Fiz., Leningrad (1984), pp. 135–139.

  114. 114.

    O. N. Kolesnikov, “Sections of multivalued mappings,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 2, 21–24 (1984).

  115. 115.

    O. N. Kolesnikov, “Sections of the first class of multivalued mappings,” Moscow State Univ., Moscow (1984). (Manuscript deposited at VINITI, Aug. 6, 1984, No. 5690-85 Dep.)

  116. 116.

    O. N. Kolesnikov, “Continuous single-valued and semicontinuous compact-valued sections of multivalued mappings,” Moscow State Univ., Moscow (1984). (Manuscript deposited at VINITI, Aug. 6, 1984, No. 5689-84 Dep.)

  117. 117.

    O. N. Kolesnikov, “Sections of multivalued mappings with values semistratifiable and ordered spaces,” Dokl. Akad. Nauk SSSR,277, No. 1, 33–37 (1984).

  118. 118.

    O. N. Kolesnikov, “Sections of multivalued mappings on everywhere dense subsets,” Usp. Mat. Nauk,39, No. 4, 161–162 (1984).

  119. 119.

    O. N. Kolesnikov, “Continuous sections of multivalued mappings,” in: Cardinality Invariants and Mappings of Topological Spaces [in Russian], Izhevsk (1984), pp. 31–35.

  120. 120.

    O. N. Kolesnikov, “Sections in multivalued mappings with values in scattered spaces,” Sib. Mat. Zh.,27, No. 1, 70–78 (1986).

  121. 121.

    A. B. Kolosov, “The differentiability of multivalued functions,” in: Mathematical Questions in Optimization and Control Problems [in Russian], Moscow (1981), pp. 48–54.

  122. 122.

    V. A. Komarov, “Estimates of reachability sets for linear systems,” Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 4, 865–879 (1984).

  123. 123.

    V. A. Komarov, “Estimates of the attainability set of differential inclusions,” Mat. Zametki,32, No. 6, 916–925 (1985).

  124. 124.

    V. A. Komarov, “On the high-speed time for differential inclusions,” in: Contemporary Mathematics in Physicotechnical Problems [in Russian], Moscow (1986), pp. 56–59.

  125. 125.

    A. Ya. Kopanskii, “Conditions for the representation of semidiagonal systems on the line by means of differential equations,” Mat. Issled., No. 77, 104–110 (1984).

  126. 126.

    A. Ya. Hopanskii, “The representation of dispersive dynamical and semidynamical systems on a straight line by means of F-solutions of differential inclusions,” Mat. Issled., No. 80, 95–107 (1985).

  127. 127.

    A. Ya. Kopanskii, “The representation of dispersed dynamic and semidynamic systems on a straight line by means of differential inclusions,” Izv. Akad. Nauk Moldav. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 3–6 (1985).

  128. 128.

    A. Ya. Kopanskii, “The representation of dispersive dynamical systems on the line by differential inclusions within the accuracy of a weak isomorphism,” Mat. Issled., No. 88, 60–71 (1986).

  129. 129.

    A. Ya. Kopanskii and K. S. Sibirskii, “Conditions for the representation of dynamic systems on the line by means of differential equations,” Mat. Issled., No. 67, 61–68 (1982).

  130. 130.

    V. B. Kostousov, “The structure of impulse-sliding modes under perturbations of measure type. II,” Differents. Uravn.,20, No. 5, 745–753 (1984).

  131. 131.

    T. N. Kravets, “On the solutions of stochastic differential inclusions in finite-dimensional spaces. Donets. Univ., Donetsk (1985). (Manuscript deposited at UkrNIINTI, Aug. 14, 1985. No. 1829-Uk.)

  132. 132.

    T. N. Kravets, “On the solutions of stochastic differential inclusions in Banach spaces,” Donets. Univ., Donetsk (1985). (Manuscript deposited at UkrNIINTI, Sep. 20, 1985. No. 2263 Uk.)

  133. 133.

    T. N. Kravets, “On the approximation of the solutions of stochastic differential inclusions,” in: Theory of Random Processes, No. 14 [in Russian], Naukova Dumka, Kiev (1986), pp. 43–48.

  134. 134.

    A. N. Krasovskii, “On the formalization of a positional differential game,” Dokl. Akad. Nauk SSSR,257, No. 4, 812–817 (1981).

  135. 135.

    A. Ya. Kruger, “A theorem on coverings for multivalued mappings,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Mat. Fiz. Nauk, Minsk (1985). (Manuscript deposited at VINITI, June 26, 1985, No. 4613-85 Dep.)

  136. 136.

    L. V. Kuznetsov and V. A. Egorov, “Necessary conditions for the optimality of the phase trajectory at the points where its smoothness is violated,” Preprint No. 116, Inst. Prikl. Mat. Akad. Nauk SSSR (1982).

  137. 137.

    R. M. Kuliev, “A discrete formalization of the successive selections of a multivalues mapping,” Inst. Kibernet., Akad. Nauk AzSSR, Baku (1986). (Manuscript deposited at VINITI, Apr. 30, 1986, No. 3178-B.)

  138. 138.

    R. M. Kuliev and A. G. Chentsov, “On the successive selections of a multivalued mapping,” Inst. Mat. Mekh., Ural. Nauch. Tsentra, Akad. Nauk SSSR, Sverdlovsk (1983). (Manuscript deposited at VINITI, July 8, 1983, No. 3780-83 Dep.)

  139. 139.

    L. A. Kun, “On the time-optimality problem for differential inclusions,” Differents. Uravn.,19, No. 5, 892–898 (1983).

  140. 140.

    V. M. Kuntsevich and M. M. Lychak, “Some questions concerning the theory of evolution of sets (asymptotic estimates of the motion of systems described by difference inclusions),” in: Ninth International Conference on Nonlinear Oscillations (Kiev, 1981), Vol. 2, Naukova Dumka, Kiev (1984), pp. 202–206.

  141. 141.

    A. B. Kurzhanskii, “On the analytic description of a set of surviving trajectories of a differential system,” Usp. Mat. Nauk,40, No. 4, 183–184 (1984).

  142. 142.

    A. B. Kurzhanskii, “On an analytic description of the pencil of viable trajectories of a differential system,” Dokl. Akad. Nauk SSSR,287, No. 5, 1047–1050 (1986).

  143. 143.

    A. B. Kurzhanskii and T. F. Filippova, “Description of a set of viable trajectories of a differential inclusion,” Dokl. Akad. Nauk SSSR,289, No. 1, 38–41 (1986).

  144. 144.

    A. G. Kusraev, “On a general method of subdifferentiation,” Dokl. Akad. Nauk SSR,257, No. 4, 822–826 (1981).

  145. 145.

    A. G. Kusraev, “On the openness of convex measurable correspondences,” Mat. Zametki,33, No. 1, 41–48 (1983).

  146. 146.

    G. A. Laricheva, “Dynamical systems generated by quasihomogeneous multivalued mappings,” Optimizatsiya (Novosibirsk), No. 33 (50), 111–123 (1983).

  147. 147.

    G. A. Laricheva, “Dynamical systems generated by quasihomogeneous multivalued mappings,” Dokl. Akad. Nauk SSSR,276, No. 1, 31–34 (1984).

  148. 148.

    A. A. Levakov, “Some properties of solutions of differential inclusions in a Banach space,” Vestn. Beloruss. Gos. Univ. Ser. I, No. 2, 54–56 (1981).

  149. 149.

    A. A. Levakov, “Some properties of multivalued mappings and an existence theorem for solutions of differential inclusions,” Vestn. Beloruss. Univ. Ser. I, No. 1, 45–48 (1982).

  150. 150.

    O. V. Levchuk, “On linear selectors of the subdifferential mapping of locally Lipschitz functions,” Optimizatsiya (Novosibirsk), No. 32 (49), 34–45 (1983).

  151. 151.

    Yu. S. Ledyaev, “Theorems on an implicitly defined multivalued mapping,” Dokl. Akad. Nauk SSSR,216, No. 3, 543–546 (1984).

  152. 152.

    K. B. Liberman and A. M. Potapov, “The integration of systems of ordinary differential equations under incomplete information on its parameters,” in: Boundary Value Problems [in Russian], Perm (1982), pp. 66–71.

  153. 153.

    R. S. Linichuk, “On certain multivalued mappings,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 15–18 (1981).

  154. 154.

    R. S. Linichuk, “On the hyperextensions of multivalued mappings and a spectral representation of some hyperspaces,” Ukr. Mat. Zh.,33, No. 2, 248–252 (1981).

  155. 155.

    Yu. E. Linke, “Sublinear operators, continuous semilinear selectors, and the Steiner point,” in: Dynamics of Nonlinear Systems [in Russian], Nauka, Novosibirsk (1983), pp. 182–202.

  156. 156.

    I. M. Lupikov, “Necessary and sufficient conditions for the strong differentiability of a multivalued mapping with polyhedral images,” Redkollegiya Vestn. Leningr. Gos. Univ., Mat. Mekh. Astron., Leningrad (1984). (Manuscript deposited at VINITI, June 21, 1984, No. 4197-84 Dep.)

  157. 157.

    I. M. Lupikov, “On the condition of differentiability for a multivalued mapping with polyhedral images,” Vestn. Leningr. Univ., No. 15, Vyp. 3, 95–98 (1985).

  158. 158.

    L. N. Lyapin, “The complete continuity of the multivalued Hammerstein operator,” in: Nonlinear Oscillations and Game Theory, No. 3 [in Russian], Udmurt. Gos. Univ., Izhevsk (1981), pp. 78–87.

  159. 159.

    L. N. Lyapin, “On Uryson's equation with a discontinuous operator,” Differents. Uravn.,22, No. 3, 509–518 (1986).

  160. 160.

    T. Kh. Makazhanova, “On the spectral properties of a certain class of superlinear mappings,” in: Modern Problems in Function Theory and Functional Analysis [in Russian], Karaganda (1984), pp. 84–92.

  161. 161.

    T. Kh. Makazhanova, “On the topological properties of a multivalued mapping and the family of its envelopes,” Redkollegiya Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat., Alma-Ata (1986). (Manuscript deposited at VINITI, Feb. 21, 1986, No. 1238-B Dep.)

  162. 162.

    M. I. Martynova, “A criterion for the existence of a periodic solution of a certain class of inclusions,” Magnitogor. Gorno-Metallurg. Inst., Magnitogorsk (1986). (Manuscript deposited at VINITI, June 20, 1986, No. 4555-B Dep.)

  163. 163.

    T. V. Matushkina, “On the theory of measurable selections,” in: Boundary Value Problems, Perm (1980), pp. 190–191.

  164. 164.

    E. N. Makhmudov, “Some operations over multivalued mappings, and locally conjugate mappings connected with them,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk,6, No. 6, 94–99 (1985).

  165. 165.

    E. N. Makhmudov, “Optimization problems with constraints prescribed by multivalued mappings and some of their applications,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk,6, No. 5, 114–117 (1985).

  166. 166.

    V. S. Mel'nik, “On an optimal control problem for equations with multivalued operators,” in: Adaptive Systems of Control [in Russian], Kiev (1984), pp. 23–27.

  167. 167.

    L. I. Minchenko, “Conditions for directional differentiability of the maximum function on a point-set mapping,” Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, No. 3, 108–109 (1984).

  168. 168.

    L. I. Minchenko and O. F. Borisenko, “Local sections and the maximum principle for difference inclusions,” Differents. Uravn.,20, No. 3, 539–541 (1984).

  169. 169.

    L. G. Mityushin, “On nonunivalent mappings of the demand,” in: Some Aspects in the Modelling of [in Russian], Moscow (1981), pp. 96–105.

  170. 170.

    B. Sh. Mordukhovich, “Nonsmooth analysis with nonconvex generalized differentials and conjugate mappings,” Dokl. Akad. Nauk BSSR,28, No. 12, 976–979 (1984).

  171. 171.

    B. Sh. Mordukhovich, “On necessary conditions for an extremum in nonsmooth optimization,” Dokl. Akad. Nauk SSSR,283, No. 4, 816–822 (1985).

  172. 172.

    M. A. Mukhsinov, “On the solutions of differential inclusions in a Banach space,” Dokl. Akad. Nauk Tadzhik. SSR,24, No. 6, 339–342 (1981).

  173. 173.

    M. A. Mukhsinov, “On a certain differential game of quality,” Dokl. Akad. Nauk Tadzhik. SSR,24, No. 7, 410–412 (1981).

  174. 174.

    M. A. Mukhsinov, “Differential inclusions and generalized dynamical systems,” Dokl. Akad. Nauk Tadzhik. SSR,24, No. 8, 474–477 (1981).

  175. 175.

    M. A. Mukhsinov, “On conditions for the invariance of a convex set for a differential inclusion,” Dokl. Akad. Nauk UzSSR, No. 9, 5–7 (1982).

  176. 176.

    M. A. Mukhsinov, “On a certain class of differential inclusions,” Dokl. Akad. Nauk Tadzhik. SSR,26, No. 6, 338–340 (1983).

  177. 177.

    M. A. Mukhsinov, “On the existence of solutions of differential inclusions in the presence of phase constraints,” Dokl. Akad. Nauk UzSSR, No. 2, 5–7 (1984).

  178. 178.

    Nguen Khyu Vet (Nguyen Huy Viet), “On the random fixed point theorem for a random multivalued mapping,” Mat. Zametki,38, No. 2, 257–264 (1985).

  179. 179.

    Nguen Khyu V'et (Nguyen Huy Viet), “Fixed points of multivalued mappings in submetrizable topological spaces,” Vestn. Moskov. Univ. Ser. I Mat. Mekh., No. 4, 69–70 (1986).

  180. 180.

    E. I. Nenakhov and M. E. Primak, “On a certain refinement of fixed point theorems,” in: Mathematical Methods for the Investigation of Optimization Problems [in Russian], Kiev (1983), pp. 31–41.

  181. 181.

    G. M. Nepomnyashchii, “On multivalued continuous selections,” Usp. Mat. Nauk,39, No. 3, 241–242 (1984).

  182. 182.

    G. M. Nepomnyashchii, “On the structure of multivalued absolute retracts of uncountable weight,” Trudy Mosk. Mat. Obshch.,47, 146–157 (1984).

  183. 183.

    G. M. Nepomnyashchii, “Continuous multivalued selections of lower semicontinuous mappings,” Sib. Mat. Zh.,26, No. 4, 111–119 (1985).

  184. 184.

    M. S. Nikol'skii, “A remark on Filippov's lemma,” Vestn. Mosk. Univ., Ser. XV Vychisl. Mat. Kibernet., No. 2, 76–78 (1982).

  185. 185.

    Z. G. Nishnianidze, “Fixed points of monotone multivalued operators,” Soobsh. Akad. Nauk Gruzin. SSR,114, No. 3, 489–491 (1984).

  186. 186.

    S. P. Novikov, “Multivalued functions and functionals. An analogue of the Morse theory,” Dokl. Akad. Nauk SSSR,260, No. 1, 31–35 (1981).

  187. 187.

    S. P. Novikov, “Variational methods and periodic solutions of equations of Kirchhoff type. II,” Funkts. Anal. Prilozhen.,15, No. 4, 37–52 (1981).

  188. 188.

    S. P. Novikov, “Kirchhoff type equations and multivalued functions and functionals. The analogue of the Morse-Lyusternik-Shnirel'man theory and periodic orbits in a magnetic field,” Usp. Mat. Nauk,36, No. 5, 217–219 (1981).

  189. 189.

    S. P. Novikov, “Critical points and level surfaces of multivalued functions,” Trudi Mat. Inst. Akad. Nauk SSSR,166, 201–209 (1984).

  190. 190.

    S. P. Novikov, “The analytic generalized Hopf invariant. Multivalued functionals,” Usp. Mat. Nauk,39, No. 5, 97–106 (1984).

  191. 191.

    V. I. Norkin, “On random Lipschitz functions,” Kibernetika, No. 2, 66–71, 76 (1986).

  192. 192.

    E. A. Nurminskii, “Global properties ofε-subgradient mappings,” Kibernetika, No. 1, 120–122 (1986).

  193. 193.

    V. V. Obukhovskil, “On the rotation of noncompact almost acyclical multivalued vector fields,” in: Equations on Manifolds, Voronezh State Univ. (1982), pp. 118–123.

  194. 194.

    V. V. Obukhovskii, “On the existence of several fixed points of multivalued mappings,” in: Eighth School on the Theory of Operators and Functional Spaces, II, Riga (1983), pp. 35–36.

  195. 195.

    V. V. Obukhovskii, “On the topological degree for a class of noncompact multivalued mappings,” Funkts. Anal. (Ul'yanovsk), No. 23, 82–93 (1984).

  196. 196.

    V. V. Obukhovskii, “On a certain generalization of the M. A. Krasnosel'skii-A. I. Perov connectedness principle,” in: Fifth Tiraspol Symposium on General Topology and Its Applications [in Russian], Shtiintsa, Kishinev (1985), pp. 186–187.

  197. 197.

    V. V. Obukhovskii and A. G. Skaletskii, “Some theorems on the continuation and quasi-continuation of continuous mappings,” Sib. Mat. Zh.,23, No. 4, 137–141 (1982).

  198. 198.

    V. V. Obukhovskii and A. I. Furmenko, “On the topological structure of the set of solutions of certain operator inclusions,” Voronezh. Lesotekhn. Inst., Voronezh (1986). (Manuscript deposited at VINITI, June 16, 1986, No. 3565 B.)

  199. 199.

    Zh. S. Oganesyan, “On limit sets of multivalued mappings,” Dokl. Akad. Nauk SSSR,275, No. 6, 1313–1316 (1984).

  200. 200.

    Zh. S. Oganesyan, “Tangential limit sets of multivalued mappings,” in: Selected Problems in Complex Analysis [in Russian], Moscow (1986), pp. 68–95. (Manuscript deposited at VINITI, Jan. 24, 1986, No. 576-B86.)

  201. 201.

    V. I. Opoitsev, Nonlinear Systemostatics [in Russian], Nauka, Moscow (1986).

  202. 202.

    V. V. Ostapenko, “The method of H-convex sets in differential games,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 62–64 (1984).

  203. 203.

    S. Otakulov, “On a certain differential inclusion with a small lag,” in: Questions of Mathematical Analysis and Its Applications [in Russian], Samarkand (1981), pp. 35–42.

  204. 204.

    S. Otakulov, “On differential inclusions with small lag,” Differents. Uravn.,19, No. 6, 971–976 (1983).

  205. 205.

    S. Otakulov, “On the continuous dependence of the solutions of a certain class of differential inclusions on a parameter,” in: Questions of Mathematical Analysis and Its Applications [in Russian], Samarkand (1983), pp. 74–78.

  206. 206.

    S. Otakulov, “On the questioh of the dependence of the solutions of differential inclusions on a parameter,” in: Questions of Mathematical Analysis and Its Applications [in Russian], Samarkand (1984), pp. 37–43.

  207. 207.

    S. Otakulov and M. A. Yagubov, “On certain properties of differential inclusions and their applications to optimal control,” Dokl. Akad. Nauk AzSSR,37, No. 4, 11–15 (1981).

  208. 208.

    S. Otakulov and M. A. Yagubov, “Properties of the solutions of differential inclusions and their applications in optimal control,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 5, 137–143 (1982).

  209. 209.

    E. V. Oshman, “On the continuity of the metric projection to convex closed sets,” Dokl. Akad. Nauk SSSR,269, No. 2, 289–291 (1983).

  210. 210.

    E. V. Oshman, “On the continuity of the metric projection,” Mat. Zametki,37, No. 2, 200–211 (1985).

  211. 211.

    O. I. Pak, “On properties of the subdifferentials of a convex-concave function,” Kibernetika, No. 3, 127–129 (1982).

  212. 212.

    A. I. Panasyuk, “The equations of the reachability domains and their application in optimal control problems,” Avtomat. Telemekh., No. 5, 67–78 (1982).

  213. 213.

    A. I. Panasyuk “A differential equation of nonconvex attainability sets,” Mat. Zametki,37, No. 5, 717–726 (1985).

  214. 214.

    A. I. Panasyuk, “On quasidifferential equations in a metric space,” Differents. Uravn.,21, No. 8, 1344–1353 (1985).

  215. 215.

    V. P. Panteleev, “On the theory of multivalued measurable mappings,” in: Ordered Spaces and Operator Equations [in Russian], Perm (1982), pp. 104–111.

  216. 216.

    B. V. Pakhaev, “The uniform boundedness of the family of weakly regular nonadditive mappings,” Mat. Zametki,34, No. 1, 47–53 (1983).

  217. 217.

    B. V. Pakhaev, “On certain questions of multivalued integration,” in: Problems of Functional Analysis. Measure and Integral [in Russian], Kuibyshev (1984), pp. 120–130.

  218. 218.

    B. V. Pakhaev, “The principle of uniform boundedness for a family of multivalued mappings and its application to measure theory,” Gorno-Alt. Gos. Ped. Inst., Gorno-Altaisk (1985). (Manuscript deposited at VINITI, Dec. 16, 1985, No. 8649-B.)

  219. 219.

    V. R. Petukhov, “The group analysis of multivalued dynamical systems,” Preprint No. 49, Inst. of Theoretical and Experimental Physics, Moscow (1985).

  220. 220.

    V. R. Petukhov, “The structure of invariant dynamical subsystems,” Preprint No. 92, Inst. of Theoretical and Experimental Physics, Moscow (1985).

  221. 221.

    N. A. Pecherskaya, “Differentiability of multivalued mappings,” Vestn. Leningr. Univ. Mat. Mekh. Astron., No. 7, 115–117 (1981).

  222. 222.

    P. V. Pliss, “On the continuous dependence of the controllability set on a parameter,” Vestn. Leningr. Univ., No. 19, Vyp. 4, 31–36 (1980).

  223. 223.

    A. V. Plotnikov, “Differential inclusions with Kukuhara's derivative and certain control problems,” Odessa Univ., Odessa (1982). (Manuscript deposited at VINITI, Apr. 26, 1982, No. 2036-82 Dep.)

  224. 224.

    A. V. Plotnikov, “Theorems of existence and the continuous dependence on the parameter of the solutions of differential inclusions with Kukuhara's derivative,” Odessa Univ., Odessa (1982). (Manuscript deposited at VINITI, Apr. 13, 1983, No. 1949-83 Dep.)

  225. 225.

    A. V. Plotnikov, “Differential inclusions with the Kukuhara derivative and problems of control of multivalued trajectories,” in: Proceedings of the 21st All-Union Scientific Student Conference: Student and Scientific-Technical Progress (Novosibirsk, 1983), Math., Novosibirsk State Univ., Novosibirsk (1983), pp. 49–54.

  226. 226.

    V. A. Plotnikov, “The averaging of differential inclusions,” in: Ninth International Conference on Nonlinear Oscillations, Kiev, 1981, Vol. I [in Russian], Kiev (1984), pp. 306–308.

  227. 227.

    V. A. Plotnikov and A. B. Vasil'ev, “The averaging method for differential inclusions with a measurable right-hand side,” Odessa Univ., Odessa (1981) (Manuscript deposited at VINITI, July 8, 1981, No. 3338-81 Dep.)

  228. 228.

    V. A. Plotnikov and A. B. Vasil'ev, “The averaging of the equations of controlled motion with slow and fast variables,” Odessa Univ., Odessa (1981) (Manuscript deposited at VINITI, Jan. 5, 1982, No. 65-82 Dep.)

  229. 229.

    V. A. Plotnikov and V. P. Zheltlkov, “Averaging in differential inclusions with lag,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 42–45 (1983).

  230. 230.

    V. I. Plotnikov and I. M. Starobinets, “On operator inclusions in smooth extremum problems,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 42–48 (1985).

  231. 231.

    V. I. Plotnikov and I. M. Starobinets, “Phase inclusions in optimal control problems,” Differents. Uravn.,22, No. 2, 236–247 (1986).

  232. 232.

    A. I. Povolotskii and T. A. Sventsitskaya, “On the spectra of multivalued Hammerstein operators that are close to linear ones,” in: Functional Analysis, No. 20 [in Russian], Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk (1983), pp. 115–124.

  233. 233.

    A. I. Povoletskii and T. A. Sventsitskaya, “On the disposition of the continuous branches of the eigenvectors of a multivalued Hammerstein operator that is nearly linear,” in: Operators and Their Applications. Approximation of Functions. Equations [in Russian], Leningrad (1985), pp. 61–66.

  234. 234.

    E. S. Polovinkin, “A generalization of A. F. Filippov's theorem and applications in control theory,” in: Mathematical Methods in Control and Data Processing [in Russian], Moscow (1982), pp. 117–118.

  235. 235.

    E. S. Polovinkin, Elements of the Theory of Multivalued Mappings [in Russian], Izd. MFTI, Moscow (1982).

  236. 236.

    E. S. Polovinkin, The Theory of Multivalued Mappings [in Russian], Izd. MFTI, Moscow (1983).

  237. 237.

    E. S. Polovinkin, “On the integration of multivalued mappings,” Dokl. Akad. Nauk SSSR,271, No. 5, 1069–1074 (1983).

  238. 238.

    E. S. Polovinkin, “On the question of the differentiation of multivalued mappings,” in: Some Questions of Modern Mathematics and Their Applications to Problems of Mathematical Physics [in Russian], Moscow (1985), pp. 90–97.

  239. 239.

    E. S. Polovinkin, “On necessary optimality conditions for the solutions of differential inclusions on a segment,” in: Modern Mathematics in Physicotechnical Problems [in Russian], Moscow (1986), pp. 87–94.

  240. 240.

    E. S. Polovinkin and G. V. Smirnov, “Extremal problems for differential inclusions,” in: Some Questions of Modern Mathematics and Their Applications to Problems of Mathematical Physics [in Russian], Moscow (1985), pp. 98–105.

  241. 241.

    E. S. Polovinkin and G. V. Smirnov, “Continuous mappings in the set of the solutions of differential inclusions,” in: Modern Mathematics in Physicotechnical Problems [in Russian], Moscow (1986), pp. 95–102.

  242. 242.

    E. S. Polovinkin and G. V. Smirnov, “Differentiation of multivalued mappings and properties of the solutions of differential inclusions,” Dokl. Akad. Nauk SSSR,288, No. 2, 296–301 (1986).

  243. 243.

    E. S. Polovinkin and G. V. Smirnov, “On a certain approach to the differentiation of multivalued mappings and necessary conditions for the optimality of the solutions of differential inclusions,” Differents. Uravn.,22, No. 6, 944–954 (1986).

  244. 244.

    B. N. Pshenichnyi and L. I. Ginailo, “Necessary extremum conditions for discrete inclusions,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 8, 70–71 (1985).

  245. 245.

    B. N. Pshenichnyi and V. N. Gurov, “On necessary conditions for the extremum on convex differential inclusions with phase constraints,” Ukr. Mat. Zh.,33, No. 1, 105–109 (1981).

  246. 246.

    B. N. Pshenichnyi and V. S. Kirilyuk, “On the differentiability of a minimum function with connected constraints,” Kibernetika, No. 1, 123–125 (1985).

  247. 247.

    R. K. Ragimkhanov, “On the question of the existence of the upper and the lower solutions of the Hammerstein integral inclusion,” Differents. Uravn.,19, No. 11, 2011–2013 (1983).

  248. 248.

    R. K. Ragimkhanov and E. B. Veliev, “On the semicontinuity and continuity of multivalued mappings,” in: Functional Analysis, Theory of Functions and Their Applications [in Russian], Makhachkala (1985), pp. 113–119.

  249. 249.

    M. S. Radzhef, “The investigation of a certain problem of optimal control ofm objects with multivalued trajectories. Odessa Univ., Odessa (1983). (Manuscript deposited at UkrNIINTI, Jan 30, 1984, No. 137Uk -D84).

  250. 250.

    M. S. Radzhef, “On a certain high-speed problem with multivalued trajectories,” Odessa Univ., Odess (1983). (Manuscript deposited at UkrNIINTI, Aug. 7, 1984, No. 1397 Uk-84 Dep.)

  251. 251.

    M. S. Radzhef, “On the Nash equilibrium point for a differential game ofN persons with multivalued trajectories,” Odessa Univ., Odessa (1985). (Manuscript deposited at UkrNIINTI, May 8, 1985, No. 960Uk-85Dep).

  252. 252.

    N. V. Roenko, “The maximization of a probability function of a convex multivalued mapping,” in: Mathematical Methods in Control and Data Processing [in Russian], Moscow (1982), pp. 17–22.

  253. 253.

    N. V. Roenko, “The maximization problem of a certain class of integral functionals of multivalued mappings,” Inst. Kibernet., Akad. Nauk Ukr. SSR, Preprint No. 37 (1983).

  254. 254.

    A. V. Rudenko and V. N. Semenov, “Smooth branches of multivalued mappings in a prpblem of local controllability,” Kibern. Vychisl. Tekh., No. 62, 21–28 (1984).

  255. 255.

    A. V. Rudenko and I. V. Chernenko, “On certain properties of smooth sections of a multivalued reachability mapping,” in: Complex Control Systems [in Russian], Akad. Nauk Ukr. SSR, Inst. Kibernet., Kiev (1982), pp. 68–77.

  256. 256.

    P. Rupsys, “B-measurable and continuous multivalued mappings,” Litov. Mat. Sb. (Liet. Mat. Rinkinys),26, No. 4, 738–745 (1986).

  257. 257.

    M. A. Sadygov, “Necessary and sufficient optimality conditions for differential inclusions,” Inst. Mat. Mekh., Akad. Nauk AzSSR, Baku (1982). (Manuscript deposited at VINITI, July 15, 1982, No. 3786-82 Dep.)

  258. 258.

    M. A. Sadygov, “On certain necessary and sufficient conditions for the minimum for differential inclusions,” Dokl. Akad. Nauk AzSSR,40, No. 2, 6–9 (1984).

  259. 259.

    T. A. Sventsitskaya, “Multivalued Volterra integral equations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 25–29 (1982).

  260. 260.

    T. A. Sventsitskaya, “On integral inclusions of the Volterra type with a retarded argument,” in: Materials of the Fifth Conference of Young Scientists of the Friendship of Nations University (Moscow, 1982), Part 1 [in Russian], Moscow (1982), pp. 139–141. (Manuscript deposited at VINITI, July 15, 1982, No. 3814-82 Dep.)

  261. 261.

    T. A. Sventsitskaya, “Majorants of integral inclusions,” in: Operators and Their Applications [in Russian], Leningrad (1983), pp. 83–91.

  262. 262.

    K. S. Sibirskii, “Semidynamical systems,” in: Differential Equations and Applications, Part II, Tech. Univ., Ruse (1982), pp. 663–672.

  263. 263.

    K. S. Sibirskii and A. S. Shube, “Dispersive semidynamic systems on the line,” Mat. Issled., No. 67, 134–148 (1982).

  264. 264.

    K. S. Sibirskii and A. S. Shube, “The axiomatics of semidynamical systems,” Mat. Issled., No. 77, 130–136 (1984).

  265. 265.

    D. B. Silin, “Subdifferentials of convex functions and integrals of multivalued mappings,” Vestn. Moskov. Univ., Ser. XV Vychisl. Mat. Kibernet., No. 1, 55–59 (1984).

  266. 266.

    D. B. Silin, “The Riemann integrability of optimal control in linear time-optimality problems,” Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 4, 854–864 (1984).

  267. 267.

    A. G. Skaletskii, “Uniformly continuous selections in a Banach space,” in: Cardinality Invariants and Mappings of Topological Spaces [in Russian], Izhevsk (1984), pp. 44–47.

  268. 268.

    A. G. Skaletskii, “Uniformly continuous selections in Frechet spaces,” Vestn. Moskov. Univ., Ser. I Mat. Mekh., No. 2, 24–28 (1985).

  269. 269.

    G. V. Smirnov, “On the differentiability of the solutions of differential inclusions with respect to the initial data,” in: Mathematical Methods in Control and Data Processing [in Russian], Moscow (1984), pp. 116–119.

  270. 270.

    G. V. Smirnov, “On local controllability for differential inclusions,” in: Modern Mathematics in Physicotechnical Problems [in Russian], Moscow (1986), pp. 103–106.

  271. 271.

    I. M. Starobinets, “Necessary conditions for an extremum in optimal control problems with mixed constraints,” Preprint No. 121, Inst. Prikl. Fiz. Akad. Nauk SSSR (1985).

  272. 272.

    S. I. Suslov, “The realization of multivalued functions by linear controlled systems,” Upravlyaemye Sistemy (Novosibirsk), No. 21, 62–69 (1981).

  273. 273.

    S. I. Suslov, “On the closedness of a bundle of trajectories in Banach space,” Upravlyaemye Sistemy, No. 22, 66–69 (1982).

  274. 274.

    S. I. Suslov, “Martingales of multivalued functions and the Radon-Nikodym theorem for multivalued measures,” Inst. Mat., Sib. Otd. Akad. Nauk SSSR. Preprint No. 16 (1982).

  275. 275.

    V. I. Susoikin, “On the complete controllability of nonlinear systems with a constraint on the control,” in: Differential Equations: Qualitative Theory [in Russian], Ryazan. Gos. Ped. Inst., Ryazan (1981), pp. 121–128.

  276. 276.

    V. I. Susoikin, “On the existence of a fixed point of a multivalued mapping,” in: Differential Equations: Qualitative Theory [in Russian], Ryazan. Gos. Pedagog. Inst., Ryazan (1981), pp. 129–132.

  277. 277.

    A. A. Tolstonogov, “On comparison theorems for differential inclusions in a locally convex space. I. Existence of solutions,” Differents. Uravn.,17, No. 4, 651–659 (1981).

  278. 278.

    A. A. Tolstonogov, “On comparison theorems for differential inclusions in a locally convex space. II. Properties of solutions,” Differents. Uravn.,17, No. 6, 1016–1024 (1981).

  279. 279.

    A. A. Tolstonogov, “Differential inclusions in a Banach space with nonconvex right-hand side. Existence of solutions,” Sib. Mat. Zh.,22, No. 4, 182–198 (1981).

  280. 280.

    A. A. Tolstonogov, “On the structure of the set of solutions of differential inclusions with a nonconvex right-hand side,” Usp. Mat. Nauk,36, No. 4, 226–227 (1981).

  281. 281.

    A. A. Tolstonogov, “On comparison theorems for differential inclusions in a Banach space with a nonconvex right-hand side. II. Global solutions,” in: The Direct Method in the Theory of Stability and Its Applications [in Russian], Nauka, Novosibirsk (1981), pp. 18–34.

  282. 282.

    A. A. Tolstonogov, “On the density and ‘being boundary’ for the solution set of a differential inclusion in a Banach space,” Dokl. Akad. Nauk SSSR,261, No. 2, 293–296 (1981).

  283. 283.

    A. A. Tolstonogov, “On the structure of the set of solutions of differential inclusions in a Banach space,” Mat. Sb.,118 (160), No. 1, 3–18 (1982).

  284. 284.

    A. A. Tolstonogov, “On a certain dependence on a parameter of the solution of a differential inclusion with nonconvex right-hand side,” Differents. Uravn.,18, No. 9, 1559–1570 (1982).

  285. 285.

    A. A. Tolstonogov, “On an equation of an integral funnel of a differential inclusion,” Mat. Zametki,32, No. 6, 841–852 (1982).

  286. 286.

    A. A. Tolstonogov, “Integral funnel equation of a differential inclusion in a Banach space and properties of its solutions,” Dokl. Akad. Nauk SSSR,276, No. 5, 1074–1078 (1984).

  287. 287.

    A. A. Tolstonogov, “On the set of solutions of a differential inclusion in a Banach space. II,” Sib. Mat. Zh.,25, No. 1, 159–173 (1984).

  288. 288.

    A. A. Tolstonogov, “Extremal structure of an integral funnel of a linear differential inclusion in a Banach space and theorems on the existence of an optimal control,” in: Theoretical and Applied Problems in Optimal Control [in Russian], Nauka, Novosibirsk (1985), pp. 82–100.

  289. 289.

    A. A. Tolstonogov, Differential Inclusions in a Banach Space [in Russian], Nauka, Novosibirsk (1986).

  290. 290.

    A. A. Tolstonogov and V. V. Goncharov, “On the solutions of a differential inclusion with a noncompact-valued right-hand side in a Banach space,” Redkollegiya Sib. Mat. Zh., Novosibirsk (1986). (Manuscript deposited at VINITI, Jan. 30, 1986, No. 668-B).

  291. 291.

    A. A. Tolstonogov and I. A. Finogenko, “On the solutions of functional-differential inclusions,” Usp. Mat. Nauk,37, No. 4, 120 (1982).

  292. 292.

    A. A. Tolstonogov and I. A. Finogenko, “On the solutions of a differential inclusion with a lower semicontinuous nonconvex right-hand side in a Banach space,” Mat. Sb.,125 (167), No. 2, 199–230 (1984).

  293. 293.

    Yu. Yu. Trokhimchuk, Yu. B. Zelinskii, and V. V. Sharko, “On some results in the topology of manifolds, the theory of multivalued mappings, and Morse theory,” Trudy Mat. Inst. Akad. Nauk SSSR,154, 222–230 (1983).

  294. 294.

    S. P. Uryas'ev, “A method for solving equations for multivalued mappings,” in: Third Symposium on Methods for Solving Nonlinear Equations and Problems of Optimization (Tallinn, 1984), Reports and Communications [in Russian], Valgus, Tallinn (1984), pp. 98–99.

  295. 295.

    S. P. Uryas'ev, “On the method of simple iterations for the solution of inclusions for multivalued mappings,” Kibernetika, No. 6, 115–116 (1985).

  296. 296.

    V. I. Utkin and S. V. Dryakunov, “Stochastic regularization of systems with discontinuous controls,” Dokl. Akad. Nauk SSSR,272, No. 5, 1069–1072 (1983).

  297. 297.

    A. I. Fedorov, “Polymorphisms and partitionings of Lebesgue spaces,” Funkts. Anal. Prilozhen.,16, No. 2, 88–89 (1982).

  298. 298.

    V. V. Fedorchuk, “On geometric properties of covariant functors,” Usp. Mat. Nauk,39, No. 5, 169–208 (1984).

  299. 299.

    A. F. Filippov, Differential Equations with a Discontinuous Right-Hand sides [in Russian], Nauka, Moscow (1985).

  300. 300.

    V. V. Filippov, “On the existence and the properties of solutions of ordinary differential equations and differential inclusions,” Dokl. Akad. Nauk SSSR,279, No. 1, 47–50 (1984).

  301. 301.

    V. V. Filippov, “On Luzin's theorem and the right-hand sides of differential inclusions,” Mat. Zametki,37, No. 1, 93–98 (1985).

  302. 302.

    V. V. Filippov, “On ordinary dlrrerential equations with singularities in the righthand side,” Mat. Zametki,38, No. 6, 832–851 (1985).

  303. 303.

    V. V. Filippov, “The axiomatic theory of the spaces of solutions of ordinary differential equations and differential inclusions,” Dokl. Akad. Nauk SSSR,280, No. 2, 304–308 (1985).

  304. 304.

    V. V. Filippov, “On the theory of the spaces of solutions of ordinary differential equations,” Dokl. Akad. Nauk SSSR,285, No. 5, 1073–1077 (1985).

  305. 305.

    V. V. Filippov, “On the existence and the properties of solutions of ordinary differential equations and differential inclusions,” Differents. Uravn.,22, No. 6, 968–977 (1986).

  306. 306.

    I. A. Finogenko, “On the existence of solutions of certain functional-differential inclusions,” in: Boundary Value Problems [in Russian], Perm (1980), pp. 154–157.

  307. 307.

    I. A. Finogenko, “On the solutions of certain functional-differential inclusions in a Banach space,” Redkollegiya Zh. Differents. Uravn., Minsk (1981). (Manuscript deposited at VINITI, Oct. 13, 1981, No. 4765-81 Dep.)

  308. 308.

    I. A. Finogenko, “On the solutions of certain functional-differential inclusions in a Banach space,” Differents. Uravn.,18, No. 11, 2001–2002 (1982).

  309. 309.

    I. A. Finogenko, “On implicit functional-differential equations in a Banach space,” in: Dynamics of Nonlinear Systems [in Russian], Nauka, Novosibirsk (1983), pp. 151–164.

  310. 310.

    I. A. Finogenko, “On the existence of solutions of implicit differential equations,” in: Differential Equations and Numerical Methods [in Russian], Novosibirsk (1986), pp. 115–123.

  311. 311.

    V. L. Khatskevich, “The Cauchy problem for differential inclusions with maximally monotone operators,” in: Applications Methods of Functional Analysis [in Russian], Voronezh (1985), pp. 162–170.

  312. 312.

    V. Z. Tsalyuk, “Perturbations of exponentially stable differential inclusions by generalized functions,” Mat. Fiz. (Kiev), No. 28, 34–40 (1980).

  313. 313.

    V. Z. Tsalyuk, “Two definitions of the solution of a differential inclusion, perturbed by a measure,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1981). (Manuscript deposited at VINITI, Aug. 19, 1981, No. 4104-81 Dep.)

  314. 314.

    V. Z. Tsalyuk, “Thep-center of a convex set and a theorem on the Lipschitz selector,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1981). (Manuscript deposited at VINITI, Nov. 9, 1981, No. 5147-81 Dep.)

  315. 315.

    V. Z. Tsalyuk, “The invariant set of a dissipative multivalued mapping,” Voronezh Univ., Voronezh (1983). (Manuscript deposited at VINITI, Dec. 7, 1983, No. 6629-83 Dep.)

  316. 316.

    V. Z. Tsalyuk, “The Lyapunov function for a class of differential inclusions,” in: Boundary Value Problems [in Russian], Perm (1983), pp. 47–50.

  317. 317.

    V. Z. Tsalyuk, “Lipschitz convex-valued approximation of a multivalued function,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1984). (Manuscript deposited at VINITI, Jul. 2, 1984, No. 4576-84 Dep.)

  318. 318.

    V. Z. Tsalyuk, “The construction of the Lyapunov function for a homogeneous differential inclusion and its use for the estimation of solutions of inclusions with a measure,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1984). (Manuscript deposited at VINITI, Jul. 2, 1984, No. 4578-84 Dep.)

  319. 319.

    V. Z. Tsalyuk, “A theorem on the preservation of the exponential stability under the perturbation of the right-hand side of a periodic differential inclusion,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1984). (Manuscript deposited at VINITI, Jul. 2, 1984, No. 4577-84 Dep.).

  320. 320.

    V. Z. Tsalyuk, “The behavior of the solutions of a periodic differential inclusion with a measure,” in: Boundary Value Problems [in Russian], Perm (1984), pp. 126–130.

  321. 321.

    V. Z. Tsalyuk, “The existence of a periodic solution of a differential inclusion with measure,” Differents. Uravn.,22, No. 5, 794–802 (1986).

  322. 322.

    N. K. Cheban, “Recurrence for points and domains in partially ordered semigroups of multivalued mappings of a space,” in: Investigations in Functional Analysis and Differential Equations [in Russian], Shtiintsa, Kishinev (1981), pp. 108–116.

  323. 323.

    N. K. Cheban, “Extensions in dispersive dynamical systems,” Mat. Issled., No. 77, 137–145 (1984).

  324. 324.

    I. A. Chirkova, “Nonwandering points and the set of central motions in discontinuous dispersive dynamical systems,” Mat. Issled., No. 88, 151–154 (1986).

  325. 325.

    S. V. Chistyakov, “On noncooperative differential games,” Dokl. Akad. Nauk SSSR,259, No. 5, 1052–1055 (1981).

  326. 326.

    M. M. Choban and D. M. Ipate, “On the approximation of multivalued mappings and their applications to game theory. I,” Izv. Akad. Nauk Moldav. SSR Ser. Fiz.-Tekh. Mat. Nauk, No. 3, 25–29 (1980).

  327. 327.

    M. M. Choban and D. M. Ipate, “On the approximation of multivalued mappings and their applications to game theory. II,” Izv. Akad. Nauk Moldav. SSR Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 33–39 (1981).

  328. 328.

    P. I. Chugunov, “On the properties of the regular solutions of differential inclusions,” in: Boundary Value Problems [in Russian], Perm (1980), pp. 150–153.

  329. 329.

    P. I. Chugunov, “Theorem on the density of solutions of a differential inclusion and its application to a model of economic dynamics,” Optimizatsiya, No. 26 (43), 129–140 (1981).

  330. 330.

    P. I. Chugunov, “On correct solutions of differential inclusions,” Differents. Uravn.,17, No. 4, 660–668 (1981).

  331. 331.

    P. I. Chugunov, “On the dependence of the solutions of a differential inclusion on initial conditions and on the parameter,” Differents. Uravn.,17, No. 8, 1426–1433 (1981).

  332. 332.

    P. I. Chugunov, “On the asymptotic behavior of solutions of differential inclusions,” Differents. Uravn.,20, No. 4, 604–613 (1984).

  333. 333.

    P. A. Shvartsman, “Lipschitz sections of multivalued mappings and traces of functions from the Zygmund class on an arbitrary compactum,” Dokl. Akad. Nauk SSSR,276, No. 3, 559–562 (1984).

  334. 334.

    L. A. Sheikhzamanova, “On the distribution of the zeros of the components of the ???solutions of a two-dimensional system of integrodifferential equations,” Inst. Mat. Mekh., Akad. Nauk AzSSR, Baku (1982). (Manuscript deposited at VINITI, July 14, 1982, No. 3761-82 Dep.)

  335. 335.

    A. A. Shestakov and A. N. Stepanov, “On certain concepts of semidynamical systems for multivalued flows,” in: Collection of Scientific Proceedings of the All-Union Correspondence Institute of Railroad Transportation Engineers, No. 109 (1980), pp. 67–70.

  336. 336.

    V. I. Shmyrev, “On the question of the determination of fixed points of piecewise constant monotone mappings inR n,” Dokl. Akad. Nauk SSSR,259, No. 2, 299–301 (1981).

  337. 337.

    A. S. Shube, “Two examples of semidynamical systems,” Mat. Issled., No. 77, 168–172 (1984).

  338. 338.

    A. S. Shube, “The Poisson stability of the motion of semicontinuous semidynamic systems in the plane,” Mat. Issled., No, 88, 155–168 (1986).

  339. 339.

    S. Abdelmajid, “On a quasilinear elliptic partial differential equation of Thomas-Fermi type,” Boll. Un. Mat. Ital.,4B, No. 3, 685–707 (1985).

  340. 340.

    L. Adamczyk, “Semi-ciaglosc uogolnionej projekcji metrycznej,” Pr. Nauk AE Wroclawiu, No. 236, 167–181 (1983).

  341. 341.

    S. Aizicovici, “On the asymptotic behaviour of solutions of Volterra equations in Hilbert space,” Nonlinear Anal.,7, No. 3, 271–278 (1983).

  342. 342.

    S. Aizicovici, “Un résultat d'existence pour une équation non linéaire du type Volterra,” C. R. Acad. Sci. Paris, Ser. I Math.,301, No. 18, 829–832 (1985).

  343. 343.

    K. Akazawa and S. Osada, “On a characterization of flow-invariant sets by the distance function on Hilbert space,” Mem. Fac. Eng. Tamagawa Univ., No. 20. 301–315 (1985).

  344. 344.

    J. Albrycht and M. Matloka, “On fuzzy multivalued functions. Part 2: Some topological properties,” Fuzzy Sets and Systems,15, No. 2, 193–197 (1985).

  345. 345.

    J. C. Alexander and P. M. Fitzpatrick, “Global bifurcation for solutions of equations involving several parameter multivalued condensing mappings,” Lect. Notes Math., No. 886, 1–19 (1981).

  346. 346.

    M. Ali Khan, “On the integration of set-valued mappings in a nonreflexive Banach space. II,” Simon Stevin,59, No. 3, 257–267 (1985).

  347. 347.

    M.-C. Alicu and O. Mark, “Some properties of the fixed points set for multifunctions,” Stud. Univ. Babes-Bolyai Math., 25, No. 4, 77–79 (1980).

  348. 348.

    M. Altman, “Contractors and fixed points,” Contemp. Math.,21, 1–14 (1983).

  349. 349.

    F. D. Ancel, “The role of countable dimensionality in the theory of cell-like relations,” Trans. Am. Math. Soc.,287, No. 1, 1–40 (1985).

  350. 350.

    D. E. Anderson, J. L. Nelson, and K. L. Singh, “Fixed points for single and multivalued mappings in locally convex spaces,” Math. Japon.,31, No. 5, 665–672 (1986).

  351. 351.

    T. S. Angell, “The controllability problem for nonlinear Volterra systems,” J. Optim. Theory Appl.,41, No. 1, 9–35 (1983).

  352. 352.

    T. S. Angell, “Existence of solutions of multivalued Urysohn integral equations,” J. Optim. Theory Appl.,46, No. 2, 129–151 (1985).

  353. 353.

    G. Anichini, “Boundary value problem for multivalued differential equations and controllability,” J. Math. Anal. Appl.,105, No. 2, 372–382 (1985).

  354. 354.

    G. Anichini, G. Conti, and P. Zecca, “Approximation of nonconvex set valued mappings,” Boll. Un. Mat. Ital., Ser. VI,4C, No. 1, 145–154 (1985).

  355. 355.

    G. Anichini, G. Conti, and P. Zecca, “A further result on the approximation of nonconvex set valued mappings,” Boll. Un. Mat. Ital., Ser. VI,4C, No. 1, 155–171 (1985).

  356. 356.

    G. Anichini and P. Zecca, “Multivalued differential equations and control problems,” Houston J. Math.,10, No. 3, 307–313 (1984).

  357. 357.

    M.-C. Anisiu, “Point-to-set mappings. Continuity,” Preprint Babes-Bolyai Univ. Fac. Math. Res. Semin., No. 3, Semin. Fixed Point Theory (1981), pp. 1–100.

  358. 358.

    M.-C. Anisiu, “On the continuity of point-to-set mappings,” Preprint Babes-Bolyai Univ. Fac. Math. Res. Sem., No. 3, 20–23 (1985).

  359. 359.

    O. Arino, S. Gautier, and J. P. Penot, “A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations,” Publ. Math. Univ. de Pau et des Pays de l'Adour, Fac. Sci. Exact., I/1–I/11 (1980).

  360. 360.

    O. Arino, S. Gautier, and J. P. Penot, “A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations,” Funkcial. Ekvac.,22, No. 3, 273–279 (1984).

  361. 361.

    T. E. Armstrong, “Full houses and cones of excessive functions,” Indiana Univ. Math. J.,29, No. 5, 737–746 (1980).

  362. 362.

    Z. Artstein, “Limit laws for multifunctions applied to an optimization problem,” Lect. Notes Math., No. 1091, 66–79 (1984).

  363. 363.

    Z. Artstein, “On dense univalued representations of multivalued maps,” Rend. Circ. Mat. Palermo,33, No. 3, 340–350 (1984).

  364. 364.

    H. Asakawa, “Accretivity and duality map in Banach space,” Proc. Jpn. Acad., Ser. A,60, No. 6, 201–204 (1984).

  365. 365.

    I. Assani, “Quelques résultats liés aux ensembles décomposables de LE 1,” C. R. Acad. Sci. Paris, Ser. I Math.,294, No. 19, 641–644 (1982).

  366. 366.

    I. Assani and H.-A. Klei, “Parties décomposables compactes de LE 1,” C. R. Acad. Sci. Paris, Ser. I Math.,294, No. 16, 533–536 (1982).

  367. 367.

    J.-P. Aubin, “Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions,” in: Mathematical Analysis and Applications, Essays dedicated to Laurent Schwartz on the occasion of his 65th birthday (editor: L. Nachbin), Part A, Adv. in Math., Supplementary Studies,7A, Academic Press, New York (1981), pp. 159–229.

  368. 368.

    J.-P. Aubin, “Heavy viable trajectories of a decentralized allocation mechanism,” Lecture Notes in Control and Information Sciences, No. 62, 487–501 (1984).

  369. 369.

    J.-P. Aubin, “Slow and heavy viable trajectories of controlled problems. Smooth viability domains,” Lect. Notes Math., No. 1091, 105–116 (1984).

  370. 370.

    J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Springer, Berlin (1984).

  371. 371.

    J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York (1984).

  372. 372.

    J.-P. Aubin and H. Frankowska, “Trajectories lourdes de systèmes contrÔlés,” C. R. Acad. Sci. Paris, Ser. I Math.,298, No. 20, 521–524 (1984).

  373. 373.

    J.-P. Aubin, H. Frankowska, and Cz. Olech, “Controlabilité des processus convexes,” C. R. Acad. Sci. Paris, Ser. I,301, No. 5, 153–156 (1985).

  374. 374.

    J.-P. Aubin, H. Frankowska, and Cz. Olech, “Controllability of convex processes,” in: Proc. 24th IEEE Conf. Decision and Control, Fort Lauderdale, Florida, Dec. 11–13, 1985, Vol. 2, New York (1985), pp. 1358–1360.

  375. 375.

    B. Aupetit, “Analytic multivalued functions in Banach algebras and uniform algebras,” Adv. Math.,44, No. 1, 18–60 (1982).

  376. 376.

    B. Aupetit, “Geometry of pseudoconvex open sets and distribution of values of analytic multivalued functions,” Contemp. Math.,32, 15–34 (1984).

  377. 377.

    B. Aupetit and A. Zraibi, “Distribution des valeurs des fonctions analytiques multiformes,” Studia Math.,79, No. 3, 217–226 (1984).

  378. 378.

    U. Avraham, “Free sets for nowhere-dense set mappings,” Israel J. Math.,39, No. 1–2, 167–176 (1981).

  379. 379.

    A. Baccari and A. Trad, “Stabilite exponentielle des solutions d'équilibre des systemes differentiels a seconds membres localement lipschitziens,” C. R. Acad. Sci. Paris, Ser. I Math.,302, No. 12, 439–442 (1986).

  380. 380.

    A. Bacciotti and G. Stefani, “Self-accessibility of a set with respect to a multivalued field,” J. Optim. Theory Appl.,31, No. 4, 535–552 (1980).

  381. 381.

    S. Bagchi, “On a.s. convergence of classes of multivalued asymptotic martingales,” Ann. Inst. H. Poincaré, Probab. Statist.,21, No. 4, 313–321 (1985).

  382. 382.

    M. Bakleh, “Linéarisation d'une équation différentielle multivoque,” C. R. Acad. Sci. Paris, Ser. I Math.,296, No. 8, 349–352 (1983).

  383. 383.

    E. J. Balder, “An extension of the essential supremum concept with applications to normal integrands and multifunctions,” Bull. Austral. Math. Soc.,27, No. 3, 407–418 (1983).

  384. 384.

    T. Bânzaru, “On the upper semicontinuity of upper topological limits for multifunction nets,” Inst. Politehn. “Traian Vuia” Timisoara, Lucrar. Sem. Mat. Fiz., May, 59–64 (1983).

  385. 385.

    T. Bânzaru and N. Crivat, “Net characterization of almost periodicity for multivalued mappings,” in: Proc. Sem. Functional Equations, Approximation, and Convexity, Timisoara (1980), pp. 163–168.

  386. 386.

    T. Bânzaru and N. Crivat, “On almost periodic multivalued maps with values in uniform spaces,” Bul. stiint. Tehn. Inst. Politehn. “Traian Vuia” Timisoara,26 (40), No. 2, 47–51 (1981).

  387. 387.

    T. Bânzaru and N. Crivat, “Net characterization of almost periodicity for multivalued mappings,” Bul. Stunt. Tehn. Inst. Politehn. “Traian Vuia” Timisoara,27, No. 1, 59–62 (1982).

  388. 388.

    T. Bânzaru and N. Crivat, “A compactness criterion for families of almost periodic multifunctions,” Bul. Stiint. Tehn. Inst. Politehn. Timisoara, Constr.,27, No. 1–2, 1–6 (1982).

  389. 389.

    T. Bânzaru and N. Crivat, “Linear multifunctions,” Inst. Politehn. “Traian Vuia” Timisoara, Lucrar. Sem. Mat. Fiz., May, 23–28 (1984).

  390. 390.

    T. Bânzaru and N. Crivat, “On the continuity of linear multifunctions,” in: Proc. Fifteenth National Conference on Geometry and Topology, Timisoara (1984), pp. 7–10.

  391. 391.

    T. Bânzaru and B. Rendi, “Relations between various notions for continuity of multifunctions,” Inst. Politehn. Timisoara, Lucrar. Sem. Mat. Fiz., November, 73–76 (1984).

  392. 392.

    R. Barbolla and J. Fontanillas, “Selections uniformement continues dans les éspaces uniformes de dimension faiblement finie,” C. R. Acad. Sci. Paris, Ser. I Math.,294, No. 1, 47–50 (1982).

  393. 393.

    V. Barbu, “The time-optimal control problem for parabolic variational inequalities,” Appl. Math. Optim.,11, No. 1, 1–22 (1984).

  394. 394.

    V. Barbu, Optimal Control of Variational Inequalities, Res. Notes Math., No. 100, Pitman, Boston (1984).

  395. 395.

    V. Barbu, “The time optimal control of variational inequalities. Dynamic programming and the maximum principle,” Lect. Notes Math., No. 1119, 1–19 (1985).

  396. 396.

    V. Barbu and G. Morosanu, “Existence for a nonlinear hyperbolic system,” Nonlinear Anal.,5, No. 4, 341–353 (1981).

  397. 397.

    E. Barcz, “Some fixed points theorems for multivalued mappings,” Demonstratio Math.,16, No. 3, 735–744 (1983).

  398. 398.

    C. Bardaro and P. Pucci, “Some contributions to the theory of multivalued differential equations,” Atti Sem. Mat. Fis. Univ. Modena,32, No. 1, 175–202 (1983).

  399. 399.

    B. R. Barmish, “Global and point controllability of uncertain dynamical systems,” IEEE Trans. Automat. Control,AC-27, No. 2, 399–408 (1982).

  400. 400.

    E. N. Barron and R. Jensen, “A nonlinear evolution system with two subdifferentials and monotone differential games,” J. Math. Anal. Appl.,97, No. 1, 65–80 (1983).

  401. 401.

    L. Barthelemy and F. Catte, “Application de la théorie des semi-groupes non linéaires dans L8 a l'étude d'une classe d'inéquations quasi-variationnelles,” Ann. Fac. Sci. Toulouse Math.,4, No. 2, 165–190 (1982).

  402. 402.

    G. Bartuzel and A. Fryszkowski, “On existence of solutions for inclusion δu εF(x, ▽u),” Seminarber. Humboldt-Univ. Berlin Sekt. Math., No. 65 (1984), pp. 1–7.

  403. 403.

    E. Bednarczuk,” Duality and stability theorems for convex multivalued constrained minimization problems,” Control Cybernet.,12, No. 3–4, 133–146 (1983).

  404. 404.

    G. Beer, “The approximation of upper semicontinuous multifunctions by step multifunction, “ Pac. J. Math.,87, No. 1, 11–19 (1980).

  405. 405.

    G. Beer, “On functions that approximate relations,” Proc. Am. Math. Soc.,88, No. 4, 643–647 (1983).

  406. 406.

    G. Beer, “Dense selections,” J. Math. Anal. Appl.,95, No. 2, 416–427 (1983).

  407. 407.

    G. Beer, “Approximate selections for upper semicontinuous convex valued multifunctions,” J. Approx. Theory,39, No. 2, 172–184 (1983).

  408. 408.

    G. Beer, “On a theorem of Deutsch and Kenderov,” J. Approx. Theory,45, No. 2, 90–98 (1985).

  409. 409.

    G. Beer, “On convergence of closed sets in a metric space and distance function,” Bull. Austral. Math. Soc.,31, No. 3, 421–432 (1985).

  410. 410.

    H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, “Une alternative non linéaire en analyse convexe et applications,” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 3, 257–259 (1982).

  411. 411.

    H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, “Points fixes et coincidences pour les fonctions multivoques (applications de Ky Fan),” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 4, 337–340 (1982).

  412. 412.

    H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, “Points fixes et coincidences pour les fonctions multivoques. II. (Applications de type ϕ et ϕ*), ” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 5, 381–384 (1982).

  413. 413.

    Ph. Bénilan and F. Catte, “équation d'évolution du type (du/dt)+maxA i u= f par la théorie des semi-groupes non linéaires dans L8,” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 7, 447–450 (1982).

  414. 414.

    I. Benkö, “Continuous families of subspaces,” Bul. Univ. Brasov, Ser. C,21, 35–39 (1979).

  415. 415.

    L. M. Benveniste and J. A. Scheinkman, “Duality theory for dynamic optimization models of economics: the continuous time case,” J. Econom. Theory,27, No. 1, 1–19 (1982).

  416. 416.

    R. M. Bianchini and G. Stefani, “Multivalued fields and control systems with unbounded controls,” Ricerche Automat.,12, No. 1, 33–49 (1981).

  417. 417.

    R. M. Bianchini Tiberio and P. Zecca, “Local controllability for autonomous nonlinear systems,” J. Optim. Theory Appl.,31, No. 1, 69–83 (1980).

  418. 418.

    R. M. Bianchini and P. Zecca, “On the attainable set at time T for multivalued differential equations,” Nonlinear Anal.,5, No. 10, 1053–1059 (1981).

  419. 419.

    M. F. Bidaut-Veron, “équations elliptiques fortement non linéaires dans des domaines non bornés,” Publ. Math. Univ. de Pau et des Pays de l'Adour, Fac. Sci. Exact.,7, 1–69 (1979).

  420. 420.

    M. F. Bidaut-Veron, “Principe de maximum et support compact pour une classe d'équations elliptiques non linéaires d'ordre 4,” Publ. Math. Univ. de Pau et des Pays de l'Adour, Fac. Sci. Exact.,8, 1–18 (1979).

  421. 421.

    M. F. Bidaut-Veron, “Nonlinear elliptic equations of order 2m and subdifferentials,” J. Optim. Theory Appl.,40, No. 3, 405–432 (1983).

  422. 422.

    V. I. Blagodatskikh, “Sufficient conditions for optimality in problems with state constraints,” Appl. Math. Optim.,7, No. 2, 149–157 (1981).

  423. 423.

    H.-P. Blatt, G. Nurnberger, and M. Sommer, “A characterization of pointwise-Lipschitz-continuous selections for the metric projection,” Numer. Funct. Anal. Optim.,4, No. 2, 101–121 (1981–82).

  424. 424.

    J. Blatter and L. Schumaker, “The set of continuous selections of a metric projection in C(X),” J. Approx. Theory,36, No. 2, 141–155 (1982).

  425. 425.

    J. Blatter and L. Schumaker, “Continuous selections and maximal alternators for spline approximation,” J. Approx. Theory,38, No. 1, 71–80 (1983).

  426. 426.

    J. Blazek, “Some remarks on the duality mapping,” Acta Univ. Carolin. Math. Phys.,23, No. 2, 15–19 (1983).

  427. 427.

    I. Blum and S. Swaminathan, “Continuous selections and realcompactness,” Pac. J. Math.,93, No. 2, 251–260 (1981).

  428. 428.

    E. Bonan, “Sur les selections injectives du type fini,” Cahiers Topologie Geom. Différentielle Catégoriques,27, No. 2, 147–150 (1986).

  429. 429.

    P. Borowko, “Application of a certain method of approximation to the theory of orientor fields and differential games,” J. Differential Equations,48, No. 1, 17–34 (1983).

  430. 430.

    J. M. Borwein, “A note onε-subgradients and maximal monotonicity,” Pac. J. Math.,103, No. 2, 307–314 (1982).

  431. 431.

    A. P. Bosznay, “A remark on a problem of G. Godini,” Ann. Univ. Sci. Budapest. Eotvos Sect. Math.,26, 191–193 (1983).

  432. 432.

    M. A. Boudourides, “On the asymptotic behavior of solutions of multivalued differential equations,” Boll. Un. Mat. Ital., Ser. VI,1C, No. 1, 23–32 (1982).

  433. 433.

    M. A. Boudourides and A. Meimaridou-Kokkou, “Boundedness of multivalued differential equations,” Bull. Math. Soc. Sci. Math. R. S. Roumaine,29 (77), No. 1, 3–7 (1985).

  434. 434.

    M. A. Boudourides and J. Schinas, “The mean value theorem for multifunctions,” Bull. Math. Soc. Sci. Math. R. S. Roumaine,25 (73), No. 2, 129–141 (1981).

  435. 435.

    M. A. Boudourides and J. Schinas, “On the application of Lyapunov's second method to multivalued differential equations,” Rev. Roumaine Math. Pures Appl.,28, No. 10, 949–952 (1983).

  436. 436.

    W. W. Breckner, “A principle of condensation of singularities for set-valued functions,” Anal. Numer. Theor. Approx.,12, No. 2, 101–111 (1983).

  437. 437.

    Y. Brenier, “Averaged multivalued solutions for scalar conservation laws,” SIAM J. Numer. Anal.,21, No. 6, 1013–1037 (1984).

  438. 438.

    A. Bressan, “Sulla funzione tempo minimo nei sistemi non lineari,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),66, No. 5, 383–388 (1979).

  439. 439.

    A. Bressan, “On differential relations with lower continuous right-hand side,” J. Differential Equations,37, No. 1, 89–97 (1980).

  440. 440.

    A. Bressan, “Solutions of lower semicontinuous differential inclusions on closed sets,” Rend. Sem. Mat. Univ. Padova,69, 99–107 (1983).

  441. 441.

    F. E. Browder, “Degree of mapping for nonlinear mappings of monotone type: densely defined mapping,” Proc. Nat. Acad. Sci. U.S.A.,80, No. 8, 2405–2407 (1983).

  442. 442.

    F. E. Browder, “Coincidence theorems, minimax theorems, and variational inequalities,” Contemp. Math.,26, 67–80 (1984).

  443. 443.

    R. E. Bruck, “On the weak asymptotic almost-periodicity of bounded solutions of u″ εAu+f for monotoneA,” J. Differential Equations,37, No. 3, 309–317 (1980).

  444. 444.

    R. E. Bruck, “Asymptotic behavior of nonexpansive mappings,” Contemp. Math.,18, 1–47 (1983).

  445. 445.

    G. Bruckner, “On abstract quasivariational inequalities. Approximation of solutions. I,” Math. Nachr.,104, 209–216 (1981).

  446. 446.

    Bui Cong Cu'o'ng, “Some fixed point theorems for multifunctions in topological vector spaces (announcement of results),” Bull. Polish Acad. Sci. Math.,32, No. 3–4, 215–221 (1984).

  447. 447.

    Bui Cong Cu'o'ng, “Intersection theorems, fixed point theorems and variational inequalities,” Summary of results. Preprint IPI PAN, No. 556, 1984.

  448. 448.

    Bui Cong Cuong, “Some fixed point theorems for multifunctions with applications in game theory,” Dissertationes Math. (Rozprawy Mat.), No. 245 (1985).

  449. 449.

    Bui Khoi Dam and Nguyen Duy Tien, “On the multivalued asymptotic martingales,” Acta Math. Vietnam.,6, No. 1, 77–87 (1981).

  450. 450.

    W. Bula, “The selection theorem for mappings on the Cantor bundle,” Bull. Polish Acad. Sci. Math.,31, No. 9–12, 399–402 (1983).

  451. 451.

    J. P. Burgess, “Careful choices — a last word on Borel selectors,” Notre Dame J. Formal Logic,21, No. 3, 219–226 (1981).

  452. 452.

    J. P. Burgess, “Classical hierarchies from a modern standpoint. Part I. C-sets,” Fund. Math.,115, No. 2, 81–95 (1983).

  453. 453.

    D. Butnariu, “Fixed points for fuzzy mappings,” Fuzzy Sets and Systems,7, No. 2, 191–207 (1982).

  454. 454.

    M. L. Buzano and L. Gobbo, “Some properties of linear operators of accretive type,” Rend. Sem. Mat. Univ. Politec. Torino,42, No. 1, 105–116 (1984).

  455. 455.

    E. Campu, “Multiéquations différentielles dans les éspaces de Banach et opérateurs associés,” in: Proc. Fourth Conf. Operator Theory (Timisoara/Herculane, 1979), Univ. Timisoara, Timisoara (1980), pp. 209–213.

  456. 456.

    A. Carbone, “A remark on the notion of Φ-coherent multivalued maps,” Atti. Soc. Peloritana Sci. Fis. Mat. Natur.,27, 47–55 (1981).

  457. 457.

    T. Cardinali and A. Fiacca, “Selezioni continue ed equazioni differenziali multivoche,” Rend. Istit. Mat. Univ. Trieste,12, No. 1–2, 87–99 (1985).

  458. 458.

    G. Caristi, “Un teorema di prolungamento e alcune proprieta delle soluzioni del problema di Cauchy per una equazione differenziale multivoca,” Rend. Istit. Mat. Univ. Trieste,12, No. 1–2, 61–68 (1980).

  459. 459.

    O. Carja, “On the minimal time function for distributed control systems in Banach spaces,” J. Optim. Theory Appl.,44, No. 3, 397–406 (1984).

  460. 460.

    C. Castaing, “Un résultat d'existence de selection mesurable et compacité forte de l'intégrale d'une multiapplication dans un Banach non necessairement séparable,” Ann. Mat. Pura Appl.,133, 363–368 (1983).

  461. 461.

    C. Castaing and P. Clauzure, “Compacité faible dans l'éspaceL E 1 et dans l'éspace des multifonctions integralement bornées, et minimisation,” Ann. Mat. Pura Appl.,140, 345–364 (1985).

  462. 462.

    M. Cecchi, M. Furi, and M. Marini, “On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals,” Nonlinear Anal.,9, No. 2, 171–180 (1985).

  463. 463.

    J. Ceder, “Characterizations of Darboux selections,” Rend. Circ. Mat. Palermo,30, No. 3, 461–470 (1981).

  464. 464.

    J. Ceder, “Some problems on Borel 1 selections,” Real Anal. Exchange,8, No. 2, 502–503 (1982–83).

  465. 465.

    J. Ceder, “On some questions on Borel 1 selections,” Rend. Circ. Mat. Palermo,33, No. 2, 291–304 (1984).

  466. 466.

    J. Ceder and S. Levi, “On the search for Borel 1 selections,” Casopis Pest. Mat.,110, No. 1, 19–32 (1985).

  467. 467.

    A. Cellina, “On the differential inclusion x′ ε [−1, 1],” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),69, No. 1–2, 1–6 (1980(1981)).

  468. 468.

    A. Cellina, G. Colombo, and A. Fonda, “Approximate selections and fixed points for upper semicontinuous maps with decomposable values,” Proc. Am. Math. Soc.,98, No. 4, 663–666 (1986).

  469. 469.

    A. Cellina and M. V. Marchi, “Nonconvex perturbations of maximal monotone differential inclusions,” Israel J. Math.,46, No. 1–2, 1–11 (1983).

  470. 470.

    L. Cesari, Optimization — Theory and Applications: Problems with Ordinary Differential Equations, Springer, New York (1983).

  471. 471.

    L. Cesari and S. H. Hou, “Existence of solutions and existence of optimal solutions. The quasilinear case,” Rend. Circ. Mat. Palermo,34, No. 1, 5–45 (1985).

  472. 472.

    A. Chabi and A. Haraux, “Un théorème de valeurs intérmédiaires dans les éspaces de Sobolev et applications,” Ann. Fac. Sci. Toulouse Math.,7, No. 2, 87–100 (1985).

  473. 473.

    Kung-Ching Chang, “Free boundary problems and the set-valued mappings,” J. Differential Equations,49, No. 1, 1–28 (1983).

  474. 474.

    Shih-sen Chang, “Fixed point theorems for fuzzy mappings,” Fuzzy Sets and Systems,17, No. 2, 181–187 (1985).

  475. 475.

    Guang-Ya Chen and Yu-Yun Wang, “Generalized Hahn-Banach theorems and subdifferential of set-valued mapping,” J. Xitong Kexue yu Shuxue (Systems Sci. Math. Sci.),5, No. 3, 223–230 (1985).

  476. 476.

    F. L. Chernousko, “Guaranteed ellipsoidal estimates of state for dynamical systems,” in: Random Vibrations and Reliability, Akad.-Verlag, Berlin (1983), pp. 145–152.

  477. 477.

    C. E. Chidume, “The iterative solution of the equationf εx + Tx for a monotone operatorT inL p spaces,” J. Math. Anal. Appl.,116, No. 2, 531–537 (1986).

  478. 478.

    J. P. R. Christensen, “Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set-valued mappings,” Proc. Am. Math. Soc.,86, No. 4, 649–655 (1982).

  479. 479.

    Hu Shou Chuan, K. Deimling, and J. Pruss, “Fixed points of weakly inward multivalued maps,” Nonlinear Anal.,10, No. 5, 465–469 (1986).

  480. 480.

    K. Ciesielski, “Continuity in semidynamical systems,” Ann. Polon. Math.,46, 61–70 (1985).

  481. 481.

    F. H. Clarke, “Periodic solutions to Hamiltonian inclusions,” J. Differential Equations,40, No. 1, 1–6 (1981).

  482. 482.

    F. H. Clarke, “A variational proof of Aumann's theorem,” Appl. Math. Optim.,7, No. 4, 373–378 (1981).

  483. 483.

    F. H. Clarke and I. Ekeland, “Nonlinear oscillations and boundary value problems for Hamiltonian systems,” Arch. Rational. Mech. Anal.78, No. 4, 315–333 (1982).

  484. 484.

    F. H. Clarke and Ph. D. Loewen, “Sensitivity analysis in optimal control,” in: Proc. 23rd IEEE Conf. Decision and Control, Las Vegas, Dec. 12–14, 1984, Vol. 3, New York (1984), pp. 1649–1654.

  485. 485.

    F. H. Clarke and Ph. D. Loewen, “The value function in optimal control: sensitivity, controllability, and time-optimality,” SIAM J. Control Optim.,24, No. 2, 243–263 (1986).

  486. 486.

    F. H. Clarke and R. B. Vinter, “Local optimality conditions and Lipschitzian solutions to the Hamilton-Jacobi equation,” SIAM J. Control Optim.,21, No. 6, 856–870 (1983).

  487. 487.

    M. M. Coban, “Set-valued mappings and extension of continuous mappings,” Lect. Notes Math., No. 1060, 11–16 (1984).

  488. 488.

    D. I. A. Cohen, “On the Kakutani fixed point theorem,” in: Numerical Solution of Highly Nonlinear Problems, North-Holland, Amsterdam (1980), pp. 239–240.

  489. 489.

    G. Coletti and G. Regoli, “Continuous selections and multivalued differential equations,” Riv. Mat. Univ. Parma,7, 361–366 (1981).

  490. 490.

    Gh. Constantin and V. Radu, “On probabilisticδ-continuity and proximate fixed points for multivalued functions in PM-spaces,” Rev. Roumaine Math. Pures Appl.,26, No. 3, 393–397 (1981).

  491. 491.

    G. Conti and R. Iannacci, “Nonzero solutions of nonlinear systems of differential equations via fixed point theorems for multivalued maps,” Nonlinear Anal.,6, No. 5, 415–421 (1982).

  492. 492.

    G. Conti, I. Massabo, and P. Nistri, “Set-valued perturbations of differential equations at resonance,” Nonlinear Anal.,6, No. 6, 1031–1041 (1980).

  493. 493.

    G. Conti and J. Pejsachowicz, “Fixed point theorems for multivalued weighted maps,” Ann. Mat. Pura Appl.,126, 319–341 (1980).

  494. 494.

    M. J. Corless and G. Leitmann, “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Trans. Automat. Control,AC-26, No. 5, 1139–1144 (1981).

  495. 495.

    H. W. Corley, “A fixed point interpretation of Pareto optimization,” IEEE Trans. Automat. Control,AC-26, No. 3, 766–767 (1981).

  496. 496.

    B. Cornet, “Existence of slow solutions for a class of differential inclusions,” J. Math. Anal. Appl.,96, No. 1, 130–147 (1983).

  497. 497.

    J.-M. Coron, “Solution périodique d'une equation d'évolution,” Proc. R. Soc. Edinburgh Sec. A,89, No. 3–4, 175–180 (1981).

  498. 498.

    C. Cortazar, “The application of dissipative operators to nonlinear diffusion equations,” J. Differential Equations,47, No. 1, 1–23 (1983).

  499. 499.

    W. Coy, “A common approach to the description, implementation and test generation of multivalued functions,” in: Proc. Eleventh Internat. Symp. on Multiple-Valued Logic, IEEE Comput. Soc., New York (1981), pp. 90–94.

  500. 500.

    N. Crivat and T. Bânzaru, “On the quasicontinuity of the limits for nets of multifunctions,” Inst. Politehn. “Traian Vuia” Timisoara, Lucrar. Sem. Mat. Fiz., November, 37–40 (1983).

  501. 501.

    Z. M. Ciuciurean, “A Gould type integration of multifunctions,” Preprint Babes—Bolyai Univ. Fac. Math. Res. Semin., No. 6, 41–44 (1984).

  502. 502.

    D. W. Curtis, “Application of a selection theorem to hyperspace contractibility,” Can. J. Math.,37, No. 4, 747–759 (1985).

  503. 503.

    S. Czerwik, “Continuous solutions of a system of functional inequalities,” Glas. Mat. Ser. III,19 (39), No. 1, 105–109 (1984).

  504. 504.

    S. Czerwik, “Random fixed point theorems for a system of multivalued mappings,” Bull. Math. Soc. Sci. Math. R. S. Roumanie,29 (77), No. 1, 9–18 (1985).

  505. 505.

    R. Dobrowska, “Existence theorem for functional-integral equations with compact convex valued solutions,” Zest. Nauk. WSI Zielonej Gorze, No. 62, 35–40 (1979).

  506. 506.

    R. Dobrowska, “Continuous dependence on initial function of solutions of functional-integral equations with compact convex valued solutions,” Zest. Nauk. WSI Zielonej Gorze, No. 62, 41–45 (1979).

  507. 507.

    R. Dacic, “Fixed points of monotone multifunctions in partially ordered sets,” Publ. Inst. Math. (Beograd),27 (41), 41–50 (1980).

  508. 508.

    D. D. Ang and D. N. Thanh, “A probabilistic analogue of the Bohnenblust-Karlin fixed point theorem,” Rev. Roumaine Math. Pures Appl.,26, No. 4, 567–569 (1981).

  509. 509.

    F. S. De Blasi, “Characterizations of certain classes of semicontinuous multifunctions by continuous approximations,” J. Math. Anal. Appl.,106, No. 1, 1–18 (1985).

  510. 510.

    F. S. De Blasi and J. Myjak, “A remark on the definition of topological degree for set-valued mappings,” J. Math. Anal. Appl.,92, No. 2, 445–451 (1983).

  511. 511.

    F. S. De Blasi and J. Myjak, “Sur l'existence de selections continues,” C. R. Acad. Sci. Paris, Ser. I Math.,296, No. 17, 737–739 (1983).

  512. 512.

    F. S. De Blasi and J. Myjak, “On the solutions sets for differential inclusions,” Bull. Polish Acad. Sci. Math.,33, No. 1–2, 17–23 (1985).

  513. 513.

    F. S. De Blasi and J. Myjak, “Continuous selections for weakly Hausdorff lower semicontinuous multifunctions,” Proc. Am. Math. Soc.,93, No. 2, 369–372 (1985).

  514. 514.

    F. S. De Blasi and J. Myjak, “On continuous approximations for multifunctions,” Pac. J. Math.,123, No. 1, 9–31 (1986).

  515. 515.

    F. S. De Blasi and G. Pianigiani, “Remarks on Hausdorff continuous multifunctions and selections,” Comment. Math. Univ. Carolin.,24, No. 3, 553–561 (1983).

  516. 516.

    F. S. De Blasi and G. Pianigiani, “The Baire category method in existence problem for a class of multivalued differential equations with nonconvex right hand side,” Funkcial. Ekvac.,28, No. 2, 139–156 (1985).

  517. 517.

    E. De Giorgi, A Marino, and M. Tosques, “Funzioni (p, q)-convesse,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),73, No. 1–4, 6–14 (1982(1983)).

  518. 518.

    M. Degiovanni, A. Marino, and M. Tosques, “Evolution equations associated with (p, q)-convex functions and (p, q)-monotone operators,” Ricerche Mat.,33, No. 1, 81–112 (1984).

  519. 519.

    P. Deguire and A. Granas, “Sur une certaine alternative non-linéaire en analyse convexe,” Stud. Math.,83, No. 2, 127–138 (1986).

  520. 520.

    K. Deimling, Nonlinear Functional Analysis, Springer, Berlin (1985).

  521. 521.

    K. Deimling, “Fixed points ot weakly inward multis,” Nonlinear Anal.,10, No. 11, 1261–1262 (1986).

  522. 522.

    I. Del Prete and M. B. Lignola, “On convergence of closed-valued multifunctions,” Boll. Un. Mat. Ital.,2B, No. 3, 819–834 (1983).

  523. 523.

    I. Del Prete and M. B. Lignola, “On the existence of convergent multifunctions subsequences,” Rend. Accad. Sci. Fis. Mat. Napoli,52, No. 1, 57–61 (1985).

  524. 524.

    V. Denicolo, “Independent social choice correspondences are dictatorial,” Econom. Lett.,19, No. 1, 9–12 (1985).

  525. 525.

    W. Desch and R. Grimmer, “Invariance and wave propagation for nonlinear integrodifferential equations in Banach spaces,” J. Integral Equations,8, No. 2, 137–164 (1985).