Annals of Operations Research

, Volume 31, Issue 1, pp 323–345 | Cite as

Recent trends in random number and random vector generation

  • Harald Niederreiter
Article

Abstract

A survey of recent work in the areas of uniform pseudorandom number and uniform pseudorandom vector generation is presented. The emphasis is on methods for which a detailed theory is available. A progress report on the construction of quasirandom points for efficient multidimensional numerical integration is also given.

Keywords

uniform pseudorandom numbers uniformity test serial test lattice test linear congruential method nonlinear congruential method inversive congruential method digital multistep method GFSR method uniform pseudorandom vectors matrix generator quasirandom points discrepancy multidimensional numerical integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Afflerbach, The sub-lattice structure of linear congruential random number generators, Manuscripta Math. 55 (1986) 455–465.Google Scholar
  2. [2]
    L. Afflerbach and H. Grothe, The lattice structure of pseudo-random vectors generated by matrix generators, J. Comp. Appl. Math. 23 (1988) 127–131.Google Scholar
  3. [3]
    L. Afflerbach and R. Weilbächer, The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers, Math. Comp. 53 (1989) 343–354.Google Scholar
  4. [4]
    D.A. André, G.L. Mullen and H. Niederreiter, Figures of merit for digital multistep pseudorandom numbers, Math. Comp. 54 (1990) 737–748.Google Scholar
  5. [5]
    I.A. Antonov and V.M. Saleev, An economic method of computingLP t-sequences (Russian), Zh. Vychisl. Mat. i. Mat. Fiz. 19 (1979) 243–245.Google Scholar
  6. [6]
    A.C. Arvillias and D.G. Maritsas, Partitioning the period of a class ofm-sequences and application to pseudorandom number generation, J. ACM 25 (1978) 675–686.Google Scholar
  7. [7]
    V.C. Bhavsar and J.R. Isaac, Design and analysis of parallel Monte Carlo algorithms, SIAM J. Sci. Statist. Comp. 8 (1987) s73-s95.Google Scholar
  8. [8]
    I. Borosh and H. Niederreiter, Optimal multipliers for pseudo-random number generation by the linear congruential method, BIT 23 (1983) 65–74.Google Scholar
  9. [9]
    P. Bratley and B.L. Fox, Algorithm 659: Implementing Sobol's quasirandom sequence generator, ACM Trans. Math. Software 14 (1988) 88–100.Google Scholar
  10. [10]
    P. Bratley, B.L. Fox and L.E. Schrage,A Guide to Simulation, 2nd ed. (Springer, New York, 1987).Google Scholar
  11. [11]
    B.J. Collings, String decomposition of full-period Tausworthe sequences, Comm. Statist. Simulation Comp. 16 (1987) 673–678.Google Scholar
  12. [12]
    B.J. Collings and G.B. Hembree, Initializing generalized feedback shift register pseudorandom number generators, J. ACM 33 (1986), 706–711; Addendum, idi. B.J. Collings and G.B. Hembree, Initializing generalized feedback shift register pseudorandom number generators, J. ACM 35 (1988) 1001.Google Scholar
  13. [13]
    I. Deák, Multidimensional integration and stochastic programming,Numerical Techniques for Stochastic Optimization, eds. Yu. Ermoliev and R.J.-B. Wets (Springer, Berlin, 1988) pp. 187–200.Google Scholar
  14. [14]
    A. de Matteis and S. Pagnutti, Parallelization of random number generators and long-range correlations, Numer. Math. 53 (1988) 595–608.Google Scholar
  15. [15]
    V. Denzer and A. Ecker, Optimal multipliers for linear congruential pseudo-random number generators with prime moduli, BIT 28 (1988) 803–808.Google Scholar
  16. [16]
    L. Devroye,Non-Uniform Random Variate Generation (Springer, New York, 1986).Google Scholar
  17. [17]
    H.J.A. Duparc, C.G. Lekkerkerker and W. Peremans, Reduced sequences of integers and pseudo-random numbers, Report ZW 1953-002, Math. Centrum, Amsterdam (1953).Google Scholar
  18. [18]
    J. Eichenauer, H. Grothe and J. Lehn, Marsaglia's lattice test and non-linear congruential pseudo random number generators, Metrika 35 (1988) 241–250.Google Scholar
  19. [19]
    J. Eichenauer, H. Grothe, J. Lehn and A. Topuzoĝlu, A multiple recursive nonlinear congruential pseudo random number generator, Manuscripta Math. 59 (1987) 331–346.Google Scholar
  20. [20]
    J. Eichenauer and J. Lehn, A non-linear congruential pseudo random number generator, Statist. Papers 27 (1986) 315–326.Google Scholar
  21. [21]
    J. Eichenauer and J. Lehn, On the structure of quadratic congruential sequences, Manuscripta Math. 58 (1987) 129–140.Google Scholar
  22. [22]
    J. Eichenauer, J. Lehn and A. Topuzoĝlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988) 757–759.Google Scholar
  23. [23]
    J. Eichenauer and H. Niederreiter, On Marsaglia's lattice test for pseudorandom numbers, Manuscripta Math. 62 (1988) 245–248.Google Scholar
  24. [24]
    J. Eichenauer-Herrmann and H. Grothe, A remark on long-range correlations in multiplicative congruential pseudorandom number generators. Numer. Math. 56 (1989) 609–611.Google Scholar
  25. [25]
    J. Eichenauer-Herrmann, H. Grothe and J. Lehn, On the period length of pseudorandom vector sequences generated by matrix generators, Math. Comp. 52 (1989) 145–148.Google Scholar
  26. [26]
    J. Eichenauer-Herrmann, H. Grothe, H. Niederreiter and A. Topuzoĝlu, On the lattice structure of a nonlinear generator with modulus 2α, J. Comp. Appl. Math. 31 (1990) 81–85.Google Scholar
  27. [27]
    H. Faure, Discrépance de suites associées à un système de numération (en dimensions). Acta Arith. 41 (1982) 337–351.Google Scholar
  28. [28]
    G.S. Fishman, Multiplicative congruential random number generators with modulus 2β: An exhaustive analysis for β=32 and a partial analysis for β=48. Math. Comp. 54 (1990) 331–344.Google Scholar
  29. [29]
    G.S. Fishman and L.R. Moore, An exhaustive analysis of multiplicative congruential random number generators with modulus 231–1, SIAM J. Sci. Statist. Comp. 7 (1986) 24–45; Erratum, ibid. G.S. Fishman and L.R. Moore, An exhaustive analysis of multiplicative congruential random number generators with moduls 231–1, SIAM J. Sci. Statist. Comp. 7 (1986) 1058.Google Scholar
  30. [30]
    B.L. Fox, Algorithm 647: Implementation and relative efficiency of quasirandom sequence generators, ACM Trans. Math. Software 12 (1986) 362–376.Google Scholar
  31. [31]
    M. Fushimi, Increasing the orders of equidistribution of the leading bits of the Takusworthe sequence, Inf. Process. Lett. 16 (1983) 189–192.Google Scholar
  32. [32]
    M. Fushimi, Designing a uniform random number generator whose subsequences arek-distributed, SIAM J. Comput. 17 (1988) 89–99.Google Scholar
  33. [33]
    M. Fushimi and S. Tezuka, Thek-distribution of the generalized feedback shift register pseudorandom numbers, Comm. ACM 26 (1983) 516–523.Google Scholar
  34. [34]
    H. Grothe, Matrixgeneratoren zur Erzeugung gleichverteilter Zufallsvektoren,Zufallszahlen und Simulationen, eds. L. Afflerbach and J. Lehn (Teubner, Stuttgart, 1986) pp. 29–34.Google Scholar
  35. [35]
    H. Grothe, Matrix generators for pseudo-random vector generation, Statist. Papers 28 (1987) 233–238.Google Scholar
  36. [36]
    H. Grothe, Matrixgeneratoren zur Erzeugung gleichverteillter Pseudozufallsvektoren, Dissertation, Techn. Hochschule Darmstadt (1988).Google Scholar
  37. [37]
    J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2 (1960) 84–90; Berichtigung, ibid. J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Number. Math. 2 (1960) 196.Google Scholar
  38. [38]
    E. Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura Appl. 54 (1961) 325–333.Google Scholar
  39. [39]
    L.K. Hua and Y. Wang,Applications of Number Theory to Numerical Analysis (Springer, Berlin, 1981).Google Scholar
  40. [40]
    J. Kiefer, On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961) 649–660.Google Scholar
  41. [41]
    S. Kirkpatrick and E. P. Stoll, A very fast shift-register sequence random number generator.J. Comput. Phys. 40 (1981) 517–526.Google Scholar
  42. [42]
    D.E. Knuth.The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed. (Addison-Wesley, Reading, MA, 1981).Google Scholar
  43. [43]
    R.F. Koopman. The orders of equidistribution of subsequences of some asymptotically random sequences, Comm. ACM 29 (1986) 802–806.Google Scholar
  44. [44]
    L. Kuipers and H. Niederreiter,Uniform Distribution of Sequences (Wiley, New York, 1974).Google Scholar
  45. [45]
    G. Larcher and H. Niederreiter, Optimal coefficients modulo prime powers in the three-dimensional case. Ann. Mat. Pura Appl. 155 (1989) 299–315.Google Scholar
  46. [46]
    P. L'Ecuyer, Efficient and portable combined random number generators. Comm. ACM 31 (1988) 742–749, 774.Google Scholar
  47. [47]
    D.H. Lehmer, Mathematical methods in large-scale computing units,Proc. 2nd Symp. on Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949 (Harvard Univ. Press, Cambridge, MA, 1951) pp. 141–146.Google Scholar
  48. [48]
    T.G. Lewis and W.H. Payne, Generalized feedback shift register pseudorandom number algorithm, J. ACM 20 (1973) 456–468.Google Scholar
  49. [49]
    R. Lidl and H. Niederreiter,Finite Fields (Addison-Wesley, Reading, MA, 1983).Google Scholar
  50. [50]
    R. Lidl and H. Niederreiter,Introduction to Finite Fields and Their Applications (Cambridge Univ. Press, Cambrdige, 1986).Google Scholar
  51. [51]
    G. Marsanglia, The structure of linear congruential sequences, in:Applications of Number Theory to Numerical Analysis, ed. S.K. Zaremba (Academic Press, New York, 1972) pp. 249–285.Google Scholar
  52. [52]
    G. Marsaglia and L.-H. Tsay, Matrices and the structure of random number sequences, Linear Algebra Appl. 67 (1985) 147–156.Google Scholar
  53. [53]
    G.L. Mullen and H. Niederreiter, Optimal characterstic polymonials for digital multistep pseudorandom numbers, Computing 39 (1987) 155–163.Google Scholar
  54. [54]
    H. Niederreiter, Pseudo-random numbers and optimal coefficients. Adv. Math. 26 (1977) 99–181.Google Scholar
  55. [55]
    H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978) 957–1041.Google Scholar
  56. [56]
    H. Niederreiter, Applications des corps finis aux nombres pseudo-aléatoires,Sém. Théorie des Nombres 1982–1983, Exp. 38, Univ. de Bordeaux 1, Talence (1983).Google Scholar
  57. [57]
    H. Niederreiter, The performance ofk-step pseudorandom number generators under the uinformity test, SIAM J. Sci. Statist. Comp. 5 (1984) 798–810.Google Scholar
  58. [58]
    H. Niederreiter, The serial test for pseudo-random numbers generated by the linear congruential method, Number. Math. 46 (1985) 51–68.Google Scholar
  59. [59]
    H. Niederreiter, A pseudorandom vector generator based on finite field arithmetic, Math. Japonica 31 (1986) 759–774.Google Scholar
  60. [60]
    H. Niederreiter, Pseudozufallszahlen und die Theorie der Gleichverteilung, Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl. Abt. II 195 (1986) 109–138.Google Scholar
  61. [61]
    H. Niederreiter, A statistical analysis of generalized feedback shift register pseudorandom number generators, SIAM J. Sci. Statist. Comp. 8 (1987) 1035–1051.Google Scholar
  62. [62]
    H. Niederreiter, Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987) 273–337.Google Scholar
  63. [63]
    H. Niederreiter, Remarks on nonlinear congruential pseudorandom numbers, Metrika 35 (1988) 321–328.Google Scholar
  64. [64]
    H. Niederreiter, Statistical independence of nonlinear congruential pseudorandom numbers, Monatsh. Math. 106 (1988). 149–159.Google Scholar
  65. [65]
    H. Niederreiter, Quasi-Monte Carlo methods for multidimensional numerical integration,Numerical Integration III, eds. H. Brass and G. Hämmerlin, Int. Series of Num. Math., 85 (Birkhäuser, Basel, 1988) pp. 157–171.Google Scholar
  66. [66]
    H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988) 51–70.Google Scholar
  67. [67]
    H. Niederreiter, The serial test for digitalk-step pseudorandom numbers. Math. J. Okayama Univ. 30 (1988) 93–119.Google Scholar
  68. [68]
    H. Niederreiter, The serieal test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989) 135–144.Google Scholar
  69. [69]
    H. Niederreiter, Statistical independence properties of pseudorandom vectors produced by matrix generators. J. Comp. Appl. Math. 31 (1990) 139–151.Google Scholar
  70. [70]
    H. Niederreiter, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 55 (1990) 277–287.Google Scholar
  71. [71]
    H. Niederreiter, Pseudorandom numbers generated from shift register sequences, in:Zahlentheoretische Analysis, Springer Lecture Notes in Math., to appear.Google Scholar
  72. [72]
    N. Niki, Finite field arithmetics and multidimensional unform pseudorandom numbers (Japanese), Proc. Inst. Statist. Math. 32 (1984) 231–239.Google Scholar
  73. [73]
    A.I. Pavlov and B.B. Pokhodzeî, Pseudo-random numbers generated by linear recurrence relations over a finite field (Russian), Zh. Vychisl. Mat. i Mat. Fiz. 19 (1979) 836–842.Google Scholar
  74. [74]
    O.E. Percus and J.K. Percus, Long range correlations in linear congruential generators, J. Comput. Phys. 77 (1988). 267–269.Google Scholar
  75. [75]
    B.D. Ripley, The lattice structure of pseudo-random number generators, Proc. Roy. Soc. London Ser. A 389 (1983) 197–204.Google Scholar
  76. [76]
    W.M. Schmidt, Irregularities of distribution VII, Acta Arith. 21 (1972) 45–50.Google Scholar
  77. [77]
    I.M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals (Russian), Zh. Vychisl. Mat. i Mat Fiz. 7 (1967). 784–802.Google Scholar
  78. [78]
    E.A.D.E. Tahmi, Contribution aux générateurs de vecteurs pseudo-aléatoires, Thèse, Univ. Sci. Techn. H. Boumedienne, Algiers (1982).Google Scholar
  79. [79]
    R.C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comp. 19 (1965) 201–209.Google Scholar
  80. [80]
    S. Tezuka, On the discrepancy of GFSR pseudorandom numbers, J. ACM 34 (1987) 939–949.Google Scholar
  81. [81]
    S. Tezuka, A heuristic approach for finding asymptotically random GFSR generators, J. Inf. Proc. 10 (1987) 178–182.Google Scholar
  82. [82]
    S. Tezuka. On optimal GFSR pseudorandom number generators, Math. Comp. 50 (1988) 531–533.Google Scholar
  83. [83]
    A. van Wijngaarden, Mathematics and computing,Proc. Symp. on Automatic Digital Computation, London, 1954 (H.M. Stationery Office, London, 1954) pp. 125–129.Google Scholar
  84. [84]
    B.A. Wichmann and I.D. Hill, An efficient and portable pseudo-random number generator, Appl. Stat. 31 (1982) 188–190; Corrections, ibid. B.A. Wichmann and I.D. Hill. An efficient and portable pseudo-random number generator, Appl. Stat. 33 (1984) 123.Google Scholar
  85. [85]
    B.A. Wichmann and I.D. Hill, Building a random-number generator, Byte 12, No. 3 (1987) 127–128.Google Scholar

Copyright information

© J.C. Baltzer A. G. Scientific Publishing Company 1991

Authors and Affiliations

  • Harald Niederreiter
    • 1
  1. 1.Institute for Information ProcessingAustrian Academy of SciencesViennaAustria

Personalised recommendations