Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

On a theorem of A. N. Kolmogorov concerning lacunary partial sums of Fourier series

  • 16 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    A. N. Kolmogorov, Une Contribution à l'Étude de la Convergence des Séries de Fourier, Fund. Math.,5, 96–98 (1924).

  2. 2.

    V. V. Stepanov, Concerning a Class of Almost Periodic Functions, Dokl. Akad. Nauk SSSR,64, No. 3, 297–300 (1949).

  3. 3.

    B. M. Levitan, Almost-Periodic Functions [in Russian], Gostekhizdat, Moscow (1953).

  4. 4.

    N. K. Bari, Trigonometric Series [in Russian], Fizmatgiz, Moscow (1961).

  5. 5.

    I. P. Natanson, Theory of Functions of a Real Variable [in Russian], Moscow (1957).

  6. 6.

    E. A. Bredikhina, Some Estimates of the Deviations of the Partial Sums of a Fourier Series from Almost Periodic Functions, Matem. Sb.,50, No. 3, 369–382 (1960).

  7. 7.

    E. A. Bredikhina, On the Convergence of Fourier Series of the Almost-Periodic Functions of Stepanov, Uspkh. Matem. Nauk,19, No. 6, 134–137 (1964).

  8. 8.

    E. A. Bredikhina, On the Approximation of Almost-Periodic Functions of Stepanov, Dokl. Akad. Nauk SSSR,164, No. 2, 255–258 (1965).

Download references

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 9, No. 2, pp. 456–461, March–April, 1968.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bredikhina, E.A. On a theorem of A. N. Kolmogorov concerning lacunary partial sums of Fourier series. Sib Math J 9, 345–349 (1968). https://doi.org/10.1007/BF02204798

Download citation

Keywords

  • Fourier Series