Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The influence of mechanical impedance on the growth of maize roots

  • 174 Accesses

  • 48 Citations

Summary

Maize roots were grown between 1 mm glass beads on which a pressure of 40 kPa was applied. The roots were supplied with a constant flow of aerated nutrient solution. Compared with roots grown in a nutrient solution, the impeded crown roots showed a reduction in length of about 75%, whereas the diameter was about 50% increased.

These changes in root morphology have been attributed to changes in cell wall structure of the cortex cells, which also occur as a result of the influence of ethylene.

It is suggested that ethylene acts as an intermediate factor in the effect of mechanical impedance on root growth.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Barley K P 1963 Influence of soil strength on growth of roots. Soil Sci. 96, 175–180.

  2. 2

    Barley K P 1965 The effect of localized pressure on the growth of the maize radicle. Aust. J. Biol. Sci. 18, 499–503.

  3. 3

    Burg S P and Burg E A 1968In Biochemistry and Physiology of Plant Growth Substances. Eds. F Wightman and G. Setterfield pp 1275–1294 Runge Press, Ottawa.

  4. 4

    Gill W R and Bolt G H 1955 Pfeffer's studies of the root growth pressures exerted by plants. Agron. J. 47, 166–168.

  5. 5

    Gill W R and Miller R D 1956 A method for study of the influence of mechanical impedance and aeration on the growth of seedling roots. Soil Sci. Soc. Am. Proc. 20, 154–157.

  6. 6

    Goeschl J D, Rappaport L and Pratt H K 1966 Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Pl. Physiol. 41, 877–884.

  7. 7

    Goss M J 1977 Effects of mechanical impedance on root growth in barley. I. Effects on elongation and branching of seminal roots. J. Exp. Bot. 28, 96–111.

  8. 8

    Kays S J, Nicklow C W and Simons D H 1974 Ethylene in relation to the response of roots to physical impedance. Plant and Soil 40, 565–571.

  9. 9

    Morgan P W and Hall W C 1964 Accelerated release of ethylene by cotton following application of indolyl-3-acetic acid. Nature London 201, 99.

  10. 10

    Pfeffer W 1896 Druck und Arbeitsleistung durch wachsende Pflanzen. Abh. Sächs. Ges. Wiss. 33, 235–474.

  11. 11

    Ridge I 1973 The control of cell shape and rate of cell expansion by ethylene: effects on microfibril orientation and rate of cell expansion by ethylene: effects on microfibril orientation and cell wall extensibility in etiolated peas. Acta Bot. Neerl. 22, 144–158.

  12. 12

    Russell R S 1971In Potential crop production. Ed. P F Wareing and J P Cooper. pp 100–116 Heineman Educational Books Ltd, London.

  13. 13

    Russell R S and Goss M J 1974 Physical aspects of soil fertility — The response of roots to mechanical impedance. Neth. J. Agric. Sci. 22, 305–318.

  14. 14

    Sargent J A, Atack A and Osborne D J 1973 Orientation of cell growth in etiolated pea stem. Effect of ethylene and auxin on cell wall deposition. Planta Berlin 109, 185–192.

  15. 15

    Taylor H M and Ratliff L F 1969 Root growth pressures of cotton, peas and peanuts. Agron. J. 61, 398–402.

  16. 16

    Veen B W 1970 Orientation of microfibrils in parenchynia cells of pea stem before and after longitudinal growth. Proc. Kon. Ned. Akad. Wet. C 73, 113–117.

  17. 17

    Veen B W 1970 Control of plant cell shape by cell wall structure. Proc. Kon. Ned. Akad. Wet. C 73, 118–121.

  18. 18

    Wilson A J, Robards A W and Goss M J 1977 Effects of mechanical impedance on root growth in barley. II. Effects on cell development in seminal roots. J. Exp. Bot. 28, 1216–1227.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veen, B.W. The influence of mechanical impedance on the growth of maize roots. Plant Soil 66, 101–109 (1982). https://doi.org/10.1007/BF02203407

Download citation

Key words

  • Cell wall structure
  • Ethylene
  • Maize
  • Mechanical impedance
  • Root growth