Journal of Molecular Evolution

, Volume 43, Issue 6, pp 672–677 | Cite as

Early evolutionary origin of the planktic foraminifera inferred from small subunit rDNA sequence comparisons

  • Christopher M. Wade
  • Kate F. Darling
  • Dick Kroon
  • Andrew J. Leigh Brown
Articles

Abstract

Phylogenetic analysis of five partial planktic foraminiferal small subunit (SSU) ribosomal (r) DNA sequences with representatives of a diverse range of eukaryote, archaebacterial, and eubacterial taxa has revealed that the evolutionary origin of the foraminiferal lineage precedes the rapid eukaryote diversification represented by the “crown” of the eukaryotic tree and probably represents one of the earliest splits among extant free-living aerobic eukaryotes. The foraminiferal rDNA sequences could be clearly separated from known symbionts, commensals, and food organisms. All five species formed a single monophyletic group distinguished from the “crown” group by unique foraminiferal specific insertions as well as considerable nucleotide distance in aligned regions.

Key words

Planktic foraminifera Eukaryote evolution SSU rDNA phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bé AWH (1977) An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In: Ramsay ATS (ed) Oceanic micropaleontology. Academic Press, New York, pp 1–100Google Scholar
  2. Bé AWH, Hemleben C, Anderson OR, Spindler M, Hacunda J, Tuntivate-Choy S (1977) Laboratory and field observations of living planktonic foraminifera. Micropaleontology 23:155–179Google Scholar
  3. Cavalier-Smith T (1987) Eukaryotes with no mitochondria. Nature 326:332–333Google Scholar
  4. Darling KF, Kroon D, Wade CM, Leigh Brown AJ (1996a) The isolation and amplification of the 18S ribosomal RNA gene from planktonic foraminifers using gametogenic specimens. In: Whatley RC, Moguilevsky A (eds) Microfossils and oceanic environments. Chapter 3.1. University of Wales, Aberystwyth Press, pp 249–259Google Scholar
  5. Darling KF, Kroon D, Wade CM, Leigh Brown AJ (1996b) Molecular evolution of the planktic foraminifera. J Foram Res 26:324–330Google Scholar
  6. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410Google Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376Google Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  9. Felsenstein J (1993) PHYLIP manual version 3.52c. Berkeley University Herbarium, University of California, BerkeleyGoogle Scholar
  10. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified free topology. Syst Zool 20:406–416Google Scholar
  11. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. A method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284Google Scholar
  12. Hasegawa M, Hashimoto T, Adachi J, Iwabe N, Miyata T (1993) Early branchings in the evolution of eukaryotes: ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence data. J Mol Evol 36:380–388Google Scholar
  13. Hashimoto T, Nakamura Y, Nakamura F, Shirakura T, Adachi J, Goto N, Ojkamoto K, Hasegawa M (1994) Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan,Giardia lamblia. Mol Biol Evol 11:65–71Google Scholar
  14. Hemleben C, Spindler M, Breitinger I, Ott R (1987) Morphological and physiological responses ofGlobigerinoides sacculifer (Brady) under varying laboratory conditions. Marine Micropaleontol 12:305–324Google Scholar
  15. Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer-Verlag, New YorkGoogle Scholar
  16. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data and the branching order of the Hominoidea. J Mol Evol 4:406–425Google Scholar
  17. Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627Google Scholar
  18. Langer MR, Lipps JH, Piller WE (1993) Molecular paleobiology of protists: amplification and direct sequencing of foraminiferal DNA. Micropaleontology 39:63–68Google Scholar
  19. Leipe DD, Gunderson JH, Nerad TA, Sogin ML (1993) Small subunit ribosomal RNA ofHexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol 59:41–48Google Scholar
  20. Loomis WF, Smith DW (1990) Molecular phylogeny ofDictyostelium discoideum by protein sequence comparison. Proc Natl Acad Sci USA 87:9093–9097Google Scholar
  21. Maidak BL, Larsen N, McCaughey MJ, Overbeek R, Olsen GJ, Fogel K. Blandy J, Woese CR (1994) The ribosomal database project. Nucleic Acids Res 22:3484–3487Google Scholar
  22. Merle C, Moullade M, Lima O, Perasso R (1994) An attempt to phylogenetically characterise some planktonic foraminifers on the basis of 28S rDNA partial sequences. C R Acad Sci II Sci Terre Planetes 319:149–153Google Scholar
  23. Neefs J, Van de Peer Y, Hendriks L, De Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18:2237–2242Google Scholar
  24. Pawlowski J, Bolivar I, Guiard-Maffia J, Gouy M (1994) Phylogenetic position of foraminifera inferred from LSU rDNA sequences. Mol Biol Evol 11:929–938Google Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing evolutionary trees. Mol Biol Evol 4:406–425Google Scholar
  26. Schlegel M (1991) Protist evolution and phylogeny as discerned from small subunit ribosomal RNA sequence comparisons. Eur J Protistol 27:207–219Google Scholar
  27. Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM (1994) The genetic data environment an expandable GUI for multiple sequence analysis. Comput Appl Biosci 10:671–675Google Scholar
  28. Sogin ML (1989) Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. Am Zool 29:487–499Google Scholar
  29. Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463Google Scholar
  30. Wainwright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260:340–342Google Scholar
  31. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Harcourt Brace Jovanovich, San Diego, pp 315–322Google Scholar
  32. Wray CG, Langer MR, DeSalle R, Lee JJ, Lipps JH (1995) Origin of the foraminifera. Proc Natl Acad Sci 92:141–145Google Scholar
  33. Yang Z, Roberts D (1995) On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol Biol Evol 12:451–458Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Christopher M. Wade
    • 1
  • Kate F. Darling
    • 2
  • Dick Kroon
    • 2
  • Andrew J. Leigh Brown
    • 1
  1. 1.Centre for HIV Research, Institute of Cell, Animal and Population BiologyUniversity of Edinburgh, Waddington BuildingEdinburghUK
  2. 2.Department of Geology and Geophysics, Grant InstituteUniversity of Edinburgh, King's BuildingsEdinburghUK

Personalised recommendations