Journal of Molecular Evolution

, Volume 43, Issue 6, pp 610–621 | Cite as

Determinants of rate variation in mammalian DNA sequence evolution

  • Lindell Bromham
  • Andrew Rambaut
  • Paul H. Harvey


Attempts to analyze variation in the rates of molecular evolution among mammalian lineages have been hampered by paucity of data and by nonindependent comparisons. Using phylogenetically independent comparisons, we test three explanations for rate variation which predict correlations between rate variation and generation time, metabolic rate, and body size. Mitochondrial and nuclear genes, protein coding, rRNA, and nontranslated sequences from 61 mammal species representing 14 orders are used to compare the relative rates of sequence evolution. Correlation analyses performed on differences in genetic distance since common origin of each pair against differences in body mass, generation time, and metabolic rate reveal that substitution rate at fourfold degenerate sites in two out of three protein sequences is negatively correlated with generation time. In addition, there is a relationship between the rate of molecular evolution and body size for two nuclear-encoded sequences. No evidence is found for an effect of metabolic rate on rate of sequence evolution. Possible causes of variation in substitution rate between species are discussed.

Key words

Molecular evolution Molecular clock Phylogeny Metabolic rate Generation time Body size Allometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi J, Cao Y, Hasegawa M (1993) Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: rapid evolution in warm blooded vertebrates. J Mol Evol 36:270–281Google Scholar
  2. Adsel SA (1964) Patterns of mammalian reproduction. Cornell University Press, New YorkGoogle Scholar
  3. Avise JC, Bowden BW, Lamp T. Meylan AB, Bermingham E (1992) Mitochondrial DNA evolution at a turtles pace—evidence for low genetic variability and reduced microrevolutionary rate in the testudines. Mol Biol Evol 9:457–472Google Scholar
  4. Bailey WJ, Fitch DHA, Tagle DA, Czelusniak J (1991) Molecular evolution of the psi-eta-globin gene locus: gibbon phylogeny and the molecular clock. Mol Biol Evol 8:155–184Google Scholar
  5. Bearder SK (1987) Lorises, bushbabies and tarsiers: diverse societies in solitary foragers. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW (eds) pp 11–25Google Scholar
  6. Boitani L, Bartoli S (1982) Simon and Schuster's guide to mammals. Simon and Schuster, New YorkGoogle Scholar
  7. Boitani L, Bartoli S (1986) Macdonald encyclopedia of mammals. Macdonald, LondonGoogle Scholar
  8. Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398Google Scholar
  9. Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (ed) Evolution of genes and proteins. Sinauer, Sunderland, MA, pp 62–88Google Scholar
  10. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239Google Scholar
  11. Bulmer M, Wolfe K, Sharp PM (1991) Synonymous nucleotide substitution rate in mammalian genes: implications for the molecular clock and the relationship of mammalian orders. Proc Natl Acad Sci USA 88:5974–5978Google Scholar
  12. Burt A (1989) Comparative methods using phylogenetically independent contrasts. Oxf Surv Evol Biol 6:33–53Google Scholar
  13. Chang BH-J, Shimmin LC, Shyue S-K, Hewett-Emmett D, Li W-H (1994) Weak male-driven molecular evolution in rodents. Proc Natl Acad Sci USA 91:827–831Google Scholar
  14. Cockburn A, Mansergh IM, Broome MS, Ward S (1990) Molecular clocks and generation time in Burramyid marsupials. Mol Biol Evol 7:283–285Google Scholar
  15. Corbet GB, Harris S (1991) The handbook of British mammals. Black-well Scientific, OxfordGoogle Scholar
  16. Corbet GB, Hill JE (1991) A world list of mammalian species. Oxford University Press, OxfordGoogle Scholar
  17. Crockett CM, Eisenberg JF (1987) Howlers: variations in group size and demography. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. University of Chicago, Chicago, pp 54–68Google Scholar
  18. Dagosto M, Terranova CJ (1992) Estimating the body size of Eocene primates—a comparison of results from dental and postcranial variables. Int J Primatol 13:307–344Google Scholar
  19. Damuth J (1993) Copes rule, the island rule and the scaling of mammalian population density. Nature 365:748–750Google Scholar
  20. Davidson MM (1990a) White-tailed deer. In: King CM (ed) The handbook of New Zealand mammals. Oxford University Press, Auckland, pp 507–514Google Scholar
  21. Davidson MM (1990b) Sika deer. In: King CM (ed) The handbook of New Zealand mammals. Oxford University Press, Auckland, pp 468–477Google Scholar
  22. Douglas MJW (1990) Sambar deer. In: King CM (ed) The handbook of New Zealand mammals. Oxford University Press, Auckland, pp 477–483Google Scholar
  23. Easteal S, Collett C (1994) Consistent variation in amino-acid substitution rate, despite uniformity of mutation rate: protein evolution in mammals is not neutral. Mol Biol Evol 11:643–647Google Scholar
  24. Echols H, Goodman MF (1991) Fidelity mechanisms in DNA replication. Annu Rev Biochem 60:477–511Google Scholar
  25. Eisenberg JF (1981) The mammalian radiations. The Athalone Press, LondonGoogle Scholar
  26. Eisenberg JF (1989) Mammals of the neotropics: the northern neotropics. University of Chicago Press, ChicagoGoogle Scholar
  27. Elgar MA, Harvey PH (1987) Basal metabolic rate in mammals: allometry, phylogeny and ecology. Funct Ecol 1:25–36Google Scholar
  28. Emmons LH, Feer F (1990) Neotropical rainforest mammals: a field guide. University of Chicago, ChicagoGoogle Scholar
  29. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15Google Scholar
  30. Filipski J (1988) Why the rate of silent codon substitutions is variable within a vertebrate's genome. J Theor Biol 134:159–164Google Scholar
  31. Fleagle JG (1988) Primate adaptation and evolution. Academic Press, San DiegoGoogle Scholar
  32. Flux JEC (1990) Brown hare. In: King CM (ed) The handbook of New Zealand mammals. Oxford University Press, Auckland, pp 161–174Google Scholar
  33. Garland T, Janis CM (1993) Does metarsal/femur ratio predict maximal running speed in cursorial mammals? J Zool (London) 229:133–151Google Scholar
  34. Grzimek B (ed) (1990) Grzimek's encyclopedia of mammals. McGraw-Hill, New YorkGoogle Scholar
  35. Haim A, van Aarde RJ, Skinner JD (1990) Metabolism and thermoregulation in the cape porcupine,Hystrix africaeaustralis. Physiol Zool 63:795–802Google Scholar
  36. Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammal species. Proc Natl Acad Sci USA 71:2169–2173Google Scholar
  37. Harvey PH, Pagel M (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  38. Harvey PH, Martin RD, Clutton-Brock TH (1987) Life histories in comparative perspective. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (ed) Primate societies. University of Chicago, Chicago, pp 181–198Google Scholar
  39. Hasegawa MH, Kishino H, Yano T (1989) Estimation of branching dates among primates by molecular clocks of nuclear DNA which slowed down in Hominidae. J Hum Evol 18:461–476Google Scholar
  40. Hayssen V, van Tienhoven A, van Tienhoven A (1993) Asdell's patterns of mammalian reproduction: a compendium of species-specific data. Cornell University Press, New YorkGoogle Scholar
  41. Heaney LR (1984) Climatic influences on life-history tactics and behavior of North American tree squirrels. In: Murie JO, Michener GR (ed) The biology of ground-dwelling squirrels. University of Nebraska Press, pp 43–78Google Scholar
  42. Heusner AA (1991) Size and power in mammals. J Exp Biol 160:25–54Google Scholar
  43. Holmes EC (1991) Different rates of substitution may produce different phylogenies of eutherian mammals. J Mol Evol 33:209–215Google Scholar
  44. Holmquist GP, Filipski J (1994) Organization of mutations along the genome: a prime determinant of genome evolution. Trends Evol Ecol 9:65–68Google Scholar
  45. Husar SL (1978)Dugong dugon. Mamm Species 88-1-7Google Scholar
  46. Ina Y (1995) New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J Mol Evol 40:190–226Google Scholar
  47. Irwin DM, Arnason U (1994) Cytochrome b gene of marine mammals: phylogeny and evolution. M Mamm Evol 2:37–55Google Scholar
  48. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144Google Scholar
  49. Kappeller PM (1990) The evolution of sexual size dimorphism in prosimian primates. Am J Primatol 21:201–214Google Scholar
  50. King JE (1983) Seals of the world. Oxford University Press, OxfordGoogle Scholar
  51. Kornberg A (1980) DNA replication. W.H. Freeman, San FranciscoGoogle Scholar
  52. Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis version 1.01. The Pennsylvania State University, University Park, PAGoogle Scholar
  53. Kunkel TA (1992) DNA replication fidelity. J Biol Chem 267:18251–18254Google Scholar
  54. Langman VA, Roberts TJ, Black J, Maloiy MO, Hegland NC, Weber J-M, Kram R, Taylor CR (1995) Moving cheaply: energetics of walking in the African elephant. J Exp Biol 198:629–632Google Scholar
  55. Li W-H, Graur D (1991) Fundamentals of molecular evolution. Sinauer, Sunderland, MAGoogle Scholar
  56. Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342Google Scholar
  57. Li W-H, Gouy M, Sharp P, O'Huigin C, Yang Y-W (1990) Molecular phylogeny of Rodentia, Lagomorpha, Artiodactyla and Carniova and molecular clocks. Proc Natl Acad Sci USA 87:6703–6707Google Scholar
  58. Li W-H, Ellesworth DL, Krushkal J, Chang BH-J, Hewett-Emmett D (1996) Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylog Evol 5:182–187Google Scholar
  59. Ma D-P, Zahkikh A, Graur D, Vandenberg JL, Li W-H (1993) Structure and evolution of opossum, guinea pig and porcupine cytochrome b genes. J Mol Evol 36:327–334Google Scholar
  60. Macdonald D (ed) (1989) The encyclopedia of mammals. Unwin Hyman, LondonGoogle Scholar
  61. Macdonald D, Barrett P (1993) Field guide to British and European mammals. Harper Collins, LondonGoogle Scholar
  62. Martin AP (1995) Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Mol Biol Evol 12:1124–1131Google Scholar
  63. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091Google Scholar
  64. Martin AP, Naylor G, Palumbi SR (1992) Rates of mitochondrial DNa evolution in sharks are slow compared with mammals. Nature 357:153–155Google Scholar
  65. May RM (1993) Resisting resistance. Nature 361:593–594Google Scholar
  66. McNab BK (1986) The influence of food habits on the energetics of euterian mammals. Ecol Monogr 56:1–19Google Scholar
  67. McNab BK (1988) Complications inherent in scaling the basal rate of metabolism in mammals. Q Rev Biol 63:25–54Google Scholar
  68. McNab BK (1989) Basal rate of metabolism, body size, and food habits in the Order Carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology and evolution. Cornell University Press, New York, pp 335–354Google Scholar
  69. Mooers AØ, Harvey PH (1994) Metabolic rate, generation time and the rate of molecular evolution in birds. Mol Phylog Evol 3:344–350Google Scholar
  70. Moors PJ (1990) Norway rat. In: King CM (ed) The handbook of New Zealand mammals. Oxford University Press, Auckland, pp 192–206Google Scholar
  71. Nash LT, Bearder SK, Olson TR (1989) Synopsis ofGalago species characteristics. Int J Primatol 10:57–80Google Scholar
  72. Novacek MJ (1992) Mammal phylogenies: shaking the tree. Nature 356:121–125Google Scholar
  73. Nowak RM (1991) Walker's mammals of the world. John Hopkins University Press, LondonGoogle Scholar
  74. Oftedal OT, Gittleman JL (1989) Patterns of energy output during reproduction in Carnivores. In: Gittleman JL (ed) Carniovre behavior, ecology and evolution. Cornell University Press, New York, pp 355–378Google Scholar
  75. Ohta T (1993) An examination of the generation time effect on molecular evolution. Proc Natl Acad Sci USA 90:10676–10680Google Scholar
  76. Pagés-Feuillade E (1988) Modalités de l'occupation de l'espace et relations interindividuelles chez un prosimien nocturne malagache (Microcebus murinus). Folia Primatol 50:204–220Google Scholar
  77. Palavcan JM, Gomez AM (1993) Dental scaling in the Callitrichinae. Int J Primatol 14:177–192Google Scholar
  78. Promislow DEL (1994) DNA repair and the evolution of longevity: a critical analysis. J Theor Biol 170:291–300Google Scholar
  79. Purvis AP (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond Biol 348:405–421Google Scholar
  80. Purvis AP, Harvey PH (1995) Mammal life-history evolution—a comparative test of Charnov's model. J Zool 237:259–283Google Scholar
  81. Purvis AP, Bromham LD (in press) Estimating the transition/transversion ratio from independent pairwise comparisons with an assumed phylogeny. J Mol EvolGoogle Scholar
  82. Rand DM (1994) Thermal habit, metabolic rate and the evolution of mitochondrial DNA. TREE 9:125–131Google Scholar
  83. Richard AF (1987) Malagasy prosimians: female domiannce. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. University of Chicago, Chicago, pp 25–33Google Scholar
  84. Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–527Google Scholar
  85. Rosenheim JA, Tabashnik BE (1991) Influence of generation time on the rate of response to selection. Am Nat 137:527–541Google Scholar
  86. Rosenheim JA, Tabashnik BE (1993) Generation time and evolution. Nature 365:791–792Google Scholar
  87. Ross C (1992) Basal metabolic rate, body weight and diet in primates. Folia Primatol 58:7–23Google Scholar
  88. Rudge MR (1990) Feral goat. In: King CM (ed) The handbook of New Zealand mammals. Oxford University Press, Auckland, pp 406–423Google Scholar
  89. Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147Google Scholar
  90. Seino S, Bell GI, Li W-H (1992) Sequences of primate insulin genes support the hypothesis of a slower rate of molecular evolution in humans and apes than in monkeys. Mol Biol Evol 9:193–203Google Scholar
  91. Shimmin LC, Chang BH-J, Li W-H (1993) Male-driven evolution of DNA sequences. Nature 362:745–747Google Scholar
  92. Shimmin LC, Chang BH-J, Li W-H (1994) Contrasting rates of nucleotide substitution in the X-linked and Y-linked zinc-finger genes. J Mol Evol 39:569–578Google Scholar
  93. Simons EL (1988) A new species ofPropithecus (Primates) from Northeast Madagascar. Folia Primatol 50:143–151Google Scholar
  94. Skinner JD, Smithers RHN (1990) The mammals of the Southern African subregion. University of PretoriaGoogle Scholar
  95. Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) (1987) Primate societies. University of Chicago, ChicagoGoogle Scholar
  96. Sowls L (1984) The peccaries. University of Arizona Press, TucsonGoogle Scholar
  97. Springer MS, Kirsch JAW (1989) Rates of single-copy DNA evolution in phalangeriform marsupials. Mol Biol Evol 6:331–341Google Scholar
  98. Stephan H, Baron G, Frahm HD (1981) Insectivora: with a stereotaxic atlas of the hedgehog brain. Springer Verlag, New YorkGoogle Scholar
  99. Strahan R (1983) Complete book of Australian mammals. Angus and Robertson, SydneyGoogle Scholar
  100. Sullivan DT (1995) DNA excision-repair and transcription—implications for genome evolution. Curr Opin Genet Dev 5:786–791Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Lindell Bromham
    • 1
  • Andrew Rambaut
    • 1
  • Paul H. Harvey
    • 1
  1. 1.Department of ZoologyUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations