Journal of Molecular Evolution

, Volume 43, Issue 6, pp 551–562 | Cite as

Molecular phylogeny of the free-living archezoanTrepomonas agilis and the nature of the first eukaryote

  • T. Cavalier-Smith
  • E. E. Chao


We have sequenced the small ribosomal subunit RNA gene of the diplozoanTrepomonas agilis. This provides the first molecular information on a free-living archezoan. We have performed a phylogenetic analysis by maximum likelihood, parsimony, and distance methods for all available nearly complete archezoan small subunit ribosomal RNA genes and for representatives of all major groups of more advanced eukaryotes (metakaryotes). These show Diplozoa as the earliest-diverging eukaryotic lineage, closely followed by microsporidia.Trepomonas proves to be much more closely related toHexamita, and, to a lesser degree, toSpironucleus, than toGiardia. The close relationship between the free-livingTrepomonas on our trees and the parasitesHexamita inflata andSpironucleus refutes the idea that the early divergence of the amitochondrial Archezoa is an artefact caused by parasitism. The deep molecular divergence between the three phagotrophic genera with two cytostomes (Hexamita, Trepomonas, Spironucleus) and the saprotrophicGiardia that lacks cytostomes is in keeping with the classical evidence for a fundamental difference in the symmetry of the cytoskeleton between the two groups. We accordingly separate the two groups as two orders: Distomatida for those with two cytostomes/cytopharynxes and Giardiida ord. nov. forGiardia andOctomitus that lack these, and divide each order into two families. We suggest that this fundamental divergence in manner of feeding and in the symmetry of the cytoskeleton evolved in a free-living diplozoan very early indeed in the evolution of the eukaryotic cell, possibly very soon after the origin of the diplokaryotic state (having two nuclei linked together firmly by the cytoskeleton) and before the evolution of parasitism by distomatids and giardiids, which may have colonized animal guts independently. We discuss the possible relationship between the two archezoan phyla (Metamonada and Microsporidia) and the nature of the first eukaryotic cell in the light of our results and other recent molecular data.

Key words

Diplozoa Cytostomes Diplokaryosis Trepomonas Ribosomal RNA phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhattacharya D, Elwood HJ, Goff LJ, Sogin ML (1990) Phylogeny ofGracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. J Phycol 26:181–186Google Scholar
  2. Branke J, Berchtold M, Breunig A, König H, Reimann J (1996) 16S-like rDNA sequence and phylogenetic position of the diplomonadSpironucleus muris (Lavier 1936). FEBS Lett (in press)Google Scholar
  3. Brugerolle G (1975) Contribution a l'étude cytologique et phyletique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). VI. Caracteres généraux des diplozoaires. Protistologica 6:111–118Google Scholar
  4. Brugerolle G (1995)Trimastix convexa, a free-living amitochondriate flagellate without close relationships with Percolozoa, retortamonad or trichomonad flagellates. Eur J Protistol 31:410Google Scholar
  5. Cavalier-Smith T (1983) A 6-kingdom classification and a unified phylogeny. In: HEA Schenk, Schwemmler W (eds) Endocytobiology II. De Gruyter, Berlin, pp 1027–1034Google Scholar
  6. Cavalier-Smith (1987a) The origin of eukaryote and archaebacterial cells. Ann NY Acad Sci 503:17–54Google Scholar
  7. Cavalier-Smith T (1987b) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503:55–71Google Scholar
  8. Cavalier-Smith T (1987c) The origin of cells, a symbiosis between genes, catalysts and membranes. Cold Spring Harb Symp Quant Biol 52:805–824Google Scholar
  9. Cavalier-Smith T (1991a) The evolution of cells. In: Osawa S, Honjo T (eds) Evolution of life. Springer-Verlag, Tokyo, pp 271–304Google Scholar
  10. Cavalier-Smith T (1991b) Evolution of prokaryotic and eukaryotic cells. In: Bittar GE (ed) Foundations of medical cell biology, vol. 1. JAI Press, Greenwich, CT, pp 221–278Google Scholar
  11. Cavalier-Smith T (1991c) Cell diversification in heterotrophic flagellates. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Oxford University Press, Oxford, pp 113–131Google Scholar
  12. Cavalier-Smith T (1992a) Origins of secondary metabolism. In: Chadwick DJ, Whelan J (eds) Secondary metabolites, their function and evolution. Wiley, Chichester, pp 64–87Google Scholar
  13. Cavalier-Smith T (1992b) The number of symbiotic origins of organelles. Biosystems 28:91–106Google Scholar
  14. Cavalier-Smith T (1992c) Origin of the cytoskeleton. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific, Singapore, pp 79–106Google Scholar
  15. Cavalier-Smith T (1993a) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57:953–994Google Scholar
  16. Cavalier-Smith T (1993b) Percolozoa and the symbiotic origin of the metakaryote cell. In: Ishikawa H, Ishida M, Sato S (eds) Endocytobiology V. Tübingen University Press, pp 399–406Google Scholar
  17. Cavalier-Smith T (1993c) Evolution of the eukaryotic genome. In: Broda PMA, Oliver SG, Sims PFG (eds) The eukaryotic genome, organization and regulation. Cambridge University Press, London, pp 333–385Google Scholar
  18. Cavalier-Smith T (1995a) Membrane heredity, symbiogenesis, and the multiple origins of algae. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. The National Science Museum Foundation, Tokyo, pp 75–114Google Scholar
  19. Cavalier-Smith T (1995b) Cell cycles, diplokaryosis, and the archezoan origin of sex. Arch Protistenkunde 145:189–207Google Scholar
  20. Cavalier-Smith T (1996a) A revised 6-kingdom system of life. Biol Rev (submitted)Google Scholar
  21. Cavalier-Smith T (1996b) Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenkunde 147:(in press)Google Scholar
  22. Cavalier-Smith T, Chao EE (1995) The opalozoanApusomonas is related to the common ancestor of animals, fungi, and choanoflagellates. Proc R Soc Lond [Biol] 261:1–6Google Scholar
  23. Cavalier-Smith T, Allsopp MP, Chao EE, Boury-Esnault N, Vacelet J (1996) Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can J Zool (in press)Google Scholar
  24. Clark G, Roger A (1996) Direct evidence for secondary loss of mitochondria inEntamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521Google Scholar
  25. Dangeard PA (1910) Etudes sur la structure et le développement des organismes inférieurs. Botaniste 11:1–311Google Scholar
  26. Doolittle WF, Brown JR (1994) Tempo, mode, the progenote, and the universal root. Proc Natl Acad Sci USA 91:6721–6728Google Scholar
  27. Embley TM, Hirt RP, Williams DM (1995) Biodiversity at the molecular level: the domains, kingdoms and phyla of life. In: Biodiversity: measurement and estimation. Chapman & Hall, London, ppGoogle Scholar
  28. Farmer MA (1993) Ultrastructure ofDitrichomonas honigbergii N.G., N.sp. (Parabasalia) and its relationship to amitochondrial protists. J Euk Microbiol 40:619–626Google Scholar
  29. Felsenstein J (1992) Phylip manual (Version 3.5). University of Washington, SeattleGoogle Scholar
  30. Felsenstein J, Churchill GA (1996) A hidden Markov model approach to variation among sites in rate of evolution. Mol Biol Evol 13:93–104Google Scholar
  31. Galtier N, Gouy M (1995) Inferring phylogenies from the DNA sequences of unequal base composition. Proc Natl Acad Sci USA 92:11317–11321Google Scholar
  32. Germot A, Philippe H, Le Guyader H (1996) Mitochondrial endosymbiosis in eukaryotic evolution has occurred very early, before the emergence of trichomonads. (submitted)Google Scholar
  33. Gleeson T, Hillier L (1991) A trace display and editing program for data from fluorescence-based sequencing machines. Nucleic Acids Res 19:6481–6483Google Scholar
  34. Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Oshida M (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6685Google Scholar
  35. Golding GB, Gupta RS (1995) Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol 12:1–6Google Scholar
  36. Grassé P-P (1952) Ordre des distomatinés ou diplozoaires. In: Grassé P-P (ed) Traité de zoologie, vol 1, fasc 1. Masson, Paris, pp 963–982Google Scholar
  37. Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11Google Scholar
  38. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  39. Hinkle G, Leipe DD, Nerad TA, Sogin ML (1994) The unusually long small subunit ribosomal RNA ofPhreatamoeba balamuthi. Nucleic Acids Res 22:465–469Google Scholar
  40. Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of Archaebacteria, Eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359Google Scholar
  41. Jefferies RS (1979) The origin of chordates: a methodological essay. In: House MR (ed) The origin of major invertebrate groups. Academic Press, London, pp 443–477Google Scholar
  42. Jin L, Nei M (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 7:82–102Google Scholar
  43. Klebs (1892) Flagellatenstudien. Z Wiss Zool 55:322–353Google Scholar
  44. Kuhner MK, Felsenstein J (1994) A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 11:459–468Google Scholar
  45. Leipe DL, Gunderson JH, Nerad TA, Sogin ML (1993) Small subunit ribosomal RNA ofHexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol 59:41–48Google Scholar
  46. Lichtenstein CP, Draper J (1985) Genetic engineering of plants. In: Glover DM (ed) DNA cloning: a practical approach. IRL Press, Oxford, pp 102–103Google Scholar
  47. Medlin L, Elwood HJ, Stickel S, Sogin M (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499Google Scholar
  48. Morin L, Mignot J-P (1995) Are Archamoebae true Archezoa? The phylogenetic position ofPelomyxa sp. as inferred from large subunit ribosomal RNA sequencing. Eur J Protistol 31:402Google Scholar
  49. Müller M (1992) Energy metabolism of ancestral eukaryotes: a hypothesis based on the biochemistry of amitochondriate parasitic protists. Biosystems 28:33–40Google Scholar
  50. Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889Google Scholar
  51. Nei M (1991) The relative efficiency of different methods of phylogenetic reconstruction. In: Miyamoto MM, Cracraft J (eds) Phylogenetic analyses of DNA sequences. Oxford University Press, Oxford, pp 90–128Google Scholar
  52. Nerad TA (ed) (1993) Catalogue of Protists. American Type Culture Collection, Rockville, MDGoogle Scholar
  53. Olsen GJ (1987) Earliest phylogenetic branchings: comparing rRNA-based evolutionary talrees inferred with various techniques. Cold Spring Harb Symp Quant Biol 52:825–837Google Scholar
  54. Olsen GJ, Woese CR (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6Google Scholar
  55. Olsen GL, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48Google Scholar
  56. Patterson DJ (1994) Protozoa, evolution and systematics. In: Hausmann K, Hulsmann N (eds) Progress in protozoology. Fischer, Stuttgart, pp 1–14Google Scholar
  57. Philippe H, Adoutte A (1995) How reliable is our current view of eukaryotic phylogeny? Protist Actual 1:17–33Google Scholar
  58. Roger AJ, Graham Clark C, Doolittle WF (1996) Loss of mitochondria by trichomonads, members of an ancient protist lineage. (submitted)Google Scholar
  59. Siddall ME, Hong H, Desser SS (1992) Phylogenetic analysis of the Diplomonadida (Wenyon, 1926) Brugerolle, 1975: evidence for heterochrony in Protozoa and againstGiardia lamblia as a “missing link.” J Protozool 39:361–367Google Scholar
  60. Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM (1994) The genetic data environment and expandable GUI for multiple sequence analysis. Comput Appl Biosci 10:671–675Google Scholar
  61. Sogin ML, Edman U, Elwood H (1989a) A single kingdom of eukaryotes. In: Fernholm F, Bremer K, Jörnval H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 133–143Google Scholar
  62. Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989b) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA fromGiardia lamblia. Science 243:75–77Google Scholar
  63. Soltys B, Gupta RS (1994) Presence and cellular distribution of a 60-kDa protein related to mitochondrial hsp60 inGiardia lamblia. J Parasitol 80:580–590Google Scholar
  64. Van De Peer Y, Neefs J-M, De Rijk P, De Wachter R (1993) Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences. Biochem Syst Ecol 21:43–55Google Scholar
  65. Van Keulen H, Gutell RR, Gates MA, Campbell SR, Erlandsen SL, Jarroll EL, Kulda J, Meyer EA (1993) Unique phylogenetic position of Diplomonadida based on the complete small subunit ribosomal RNA sequence ofGiardia ardeae, G. muris, G. duodenalis andHexamita sp. FASEB J 7:223–231Google Scholar
  66. Vickerman K (1990) Phylum Zoomastigina class Diplomonadida In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones & Bartlett, Boston, pp 200–210Google Scholar
  67. Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8S rRNA. Nature 320:287–288Google Scholar
  68. Vossbrinck CR, Maddox JR, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414Google Scholar
  69. Wenyon CM (1926) Protozoology. Baillière, Tindall & Cox, LondonGoogle Scholar
  70. Winnepenninckx B, Backeljau T, Mackey L, Brooks JM, De Wachter RD, Kumar S, Garey JR (1995) 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol Biol Evol 12:1132–1137Google Scholar
  71. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  72. Wolters J (1991) The troublesome parasites—molecular and morphological evidence that Apicomplexa belong to the dinoflagellateciliate clade. Biosystems 25:75–83Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • T. Cavalier-Smith
    • 1
  • E. E. Chao
    • 1
  1. 1.Evolutionary Biology Program, Canadian Institute for Advanced Research, Department of BotanyUniversity of British ColumbiaVancouverCanada

Personalised recommendations