, Volume 43, Issue 6, pp 337–351

Sequence analysis of a polymorphic Mhc class II gene in Pacific salmon

  • K. M. Miller
  • R. E. Withler
Original Paper


Polymorphism of the nucleotide sequences encoding 149 amino acids of linked major histocompatibility complex (Mhc) class II 131 and 132 peptides, and of the intervening intron (548–773 base pairs), was examined within and among seven Pacific salmon (Oncorhynchus) species. Levels of nucleotide diversity were higher for theB1 sequence than forB2 or the intron in comparisons both within and between species. For the codons of the peptide binding region of the BI sequence, the level of nonsynonymous nucleotide substitution (dN) exceeded the level of synonymous substitution (dS) by a factor of ten for within-species comparisons, and by a factor of four for between-species comparisons. The excess of dN indicates that balancing selection maintains diversity at this salmonidMhc class II locus, as is common forMhc loci in other vertebrates. Levels of nucleotide diversity for both the exon and intron sequences were greater among than within species, and there were numerous species-specific nucleotides present in both the coding and noncoding regions. Thus, neighbor-joining analysis of both the intron and exon regions provided phylogenies in which the sequences clustered strongly by species. There was little evidence of shared ancestral (trans-species) polymorphism in the exon phylogeny, and the intron phylogeny depicted standard relationships among the Pacific salmon species. The lack of shared allelicB1 lineages in these closely related species may result from severe bottlenecks that occurred during speciation or during the ice ages that glaciated the rim of the north Pacific Ocean approximately every 100 000 years in the Pleistocene.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf, F. W. and Thorgaard, G. H. Tetraploidy and the evolution of salmonid fishes. In B. J. Turner (ed.):Evolutionary Genetics of Fishes, pp. 1–53, Plenum Press, New York, 1984Google Scholar
  2. Amemiya, C. T. and Litman, G. W. Early evolution of immunoglobulin genes.Amer Zool 31: 558–569, 1991Google Scholar
  3. Bourlet, Y., Behar, B., Guillemot, F., Frechin, N., Billault, A., Chausse, A. M., Zoorob, R., and Auffray, C. Isolation of chicken major histocompatibility complex class II (B-L) β chain and expression in lymphoid organs.EMBO J 7: 1031–1039, 1988PubMedGoogle Scholar
  4. Broecker, W. S. and Denton, G. H. What drives glacial cycles?Science 262: 48–56, 1990Google Scholar
  5. Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. Three-dimensional structure of the human class II histocompatibility antigenHLA-DR1.Nature 364: 33–39, 1993PubMedGoogle Scholar
  6. Devlin, R. H. Sequence of sockeye salmon type 1 and 2 growth hormone genes and the relationship of rainbow trout with Atlantic and Pacific salmon.Can J Fish Aquat Sci 50: 1738–1748, 1993Google Scholar
  7. Del Pozza, G., Ombra, M. N., Perfetto, C., Barbaro, A. D. L., Autiero, M., Maffei, A., and Guardiola, J.Alu repeats and evolution of theHLA-DQA1 locus. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp 231–242, Springer, Berlin Heidelberg, 1991Google Scholar
  8. Efron, B. The jackknife, the bootstrap, and other resampling plans. CBMS-NSF regional Conference Series in Applied Mathematics, Monograph 38, SIAM Philadelphia, 1982Google Scholar
  9. Felsenstein, J. Confidence limits of phylogenies: an approach using the bootstrap.Evolution 39: 783–791, 1985Google Scholar
  10. Figueroa, F., Tichy, H., Berry, R. J., and Klein, J. MHC polymorphism in island populations of mice.Curr Top Microbiol Immunol 127: 100–105, 1986PubMedGoogle Scholar
  11. Flajnik, M. F., Canel, C., Kramer, J., and Kasahara, M. Evolution of the major histocompatibility complex: molecular cloning of the major histocompatibility complex class I from the amphibian Xenopus.Proc Natl Acad Sci 88: 537–541, 1991PubMedGoogle Scholar
  12. Gibbs, H. L., Weatherhead, P. J., Boag, P. T., White, B. N., Tabak, L. M., and Hoysak, D. J. Realized reproductive success of polygynous red-winged blackbirds revealed by DNA markers.Science 250: 1394–1397, 1990Google Scholar
  13. Grimholt, U., Olsaker, I., Lindstrom, C., and Lie, O. A study of variability in the MHC class II β1 and class I α2 domain exons of Atlantic salmon (Salmo salar).Anim Genet 25: 1–7, 1994Google Scholar
  14. Hashimoto, K., Nakanishi, T., and Kurosawa, Y. Isolation of carp genes encoding major histocompatibility complex antigens.Proc Natl Acad Sci 87: 6863–6867, 1990PubMedGoogle Scholar
  15. Hordvik, I., Grimholt, U., Fosse, V. M., Lie, O., and Endresen, C. Cloning and sequence analysis of cDNAs encoding the MHC class II β chain in Atlantik salmon (Salmo salar).Immunogenetics 37: 437–441, 1993PubMedGoogle Scholar
  16. Hughes, A. L. MHC polymorphism and the design of captive breeding programs.Conserv Biol 5: 29–251, 1991Google Scholar
  17. Jukes, T. H. and Cantor, C. R. Evolution of protein molecules. In H. N. Munro (ed.):Mammalian Protein Metabolism III, pp. 21–32, Academic Press, New York, 1969Google Scholar
  18. Juul-Madsen, H. R., Glamann, J., Madsen, H. O., and Simonsen, M. MHC class 11 beta-chain expression in the rainbow trout.Scand J Immunol 35: 687–694, 1992PubMedGoogle Scholar
  19. Kido, Y., Aono, M., Yamaki, T., Matsumoto, K.-I., Murata, S., Saneyoshi, M., and Okada, N. Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution.Proc Natl Acad Sci 88: 2326–2330, 1991PubMedGoogle Scholar
  20. Klein, J.Natural History of the Major Histocompatibility Complex, John Wiley, New York, 1986Google Scholar
  21. Klein, J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis.Hum Immunol 19: 155–162, 1987PubMedGoogle Scholar
  22. Klein, J. The major histocompatibility complex of the mouse.Science 203: 516–521, 1979PubMedGoogle Scholar
  23. Klein, D., Ono, H., O'hUigin, C., Vincek, V., Goldschmidt, T., and Klein, J. Extensive MHC variability in cichlid fishes of Lake Malawi.Nature 364: 330–334, 1993PubMedGoogle Scholar
  24. Koishi, R. and Okada, N. Distribution of the salmonidHpa 1 family in the salmonid species demonstrated by in vitro runoff transcription assay of total genomic DNA: a procedure to estimate repetitive frequency and sequence divergence of a certain repetitive family with a few known sequences.J Mol Evol 32: 43–52, 1991PubMedGoogle Scholar
  25. Kumar, S., Tamura, K., and Nei, M. MEGA: Molecular Evolutionary Genetics Analysis, ver 1.01. The Pennsylvania State University, University Park, 1993Google Scholar
  26. McGuire, K. L., Duncan, W. R., and Tucker, P. W. Syrian hamster DNA shows limited polymorphism at class L-like loci.Immunogenetics 22: 257–268, 1985PubMedGoogle Scholar
  27. McPhail, J. D. and Lindsey, C. C. Freshwater fishes of northwestern Canada and Alaska.Can J Fish Aquatic Sci Bull 173: 1–381, 1970Google Scholar
  28. Miller, K. M., Withler, R. E., and Beacham, T. D. Stock identification of coho salmon (Oncorhynchus kisutch) using minisatellite DNA variation.Can J Fish Aquat Sci, in pressGoogle Scholar
  29. Nei, M. and Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions.Mol Biol Evol 3: 418–426, 1986PubMedGoogle Scholar
  30. Nei, M. and Hughes, A. L. Polymorphism and evolution of the major histocompatibility complex loci in mammals. In R. K. Selander, A. G. Clark, and T. S. Whittam (eds.):Evolution at the Molecular Level, pp. 222–247, Sinauer Associates Inc, Sunderland, 1991Google Scholar
  31. Nei, M. and Rzhetsky, A. Reconstruction of phylogenetic trees and evolution of major histocompatibility complex genes. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp. 14–27, Springer, Berlin, Heidelberg, 1991Google Scholar
  32. O'Brien, S. J., Roelke, M. E., Marker, L., Newmen, A., Winkler, C. A., Meltzer, D., Colly, L., Evermann, J. F., Bush, M., and Wildt, D. E. Genetic basis for species vulnerability in the cheetah.Science 227, 1428–1434, 1985PubMedGoogle Scholar
  33. Ohno, S.Evolution by Gene Duplication, Springer, New York, 1970Google Scholar
  34. Okada, N. SINEs.Current Opinion in Genetics and Development 1: 498–504, 1991PubMedGoogle Scholar
  35. Okamura, K., Nakanishi, T., Kurosawa, Y., and Hashimoto, K. Expansion of genes that encode MHC class I molecules in cyprinid fishes.J Immun 151: 188–200, 1993PubMedGoogle Scholar
  36. Okazaki, T. Genetic variation and population structure in mason salmonOncorhynchus masou of Japan.Bull Japan Soc Sci Fish 52: 1365–1376, 1986Google Scholar
  37. Ono, H., Klein, D., Vincek, V., Figueroa, F., O'hUigin, H., and Klein, J.Mhc class II genes of zebrafish.Proc Natl Acad Sci 89: 11886–11890, 1992PubMedGoogle Scholar
  38. Ono, H., O'hUigin, C., Tichy, H., and Klein, J. Major histocompatibility complex variation in two species of cichlid fishes from Lake Malawi.Mol Biol Evol 10: 1060–1072, 1993PubMedGoogle Scholar
  39. Plante, Y., Boage, P. T., White, B. N., and Boonstra, R. Highly polymorphic genetic markers in meadow voles (Microtus pennsyl-vanicus) revealed by a murine major histocompatibility complex (MHC) probe.Can J Zool 69: 213–220, 1991Google Scholar
  40. Rzhetsky, A. and Nei, M. A simple method for estimating and testing minimum-evolution trees.Mol Biol Evol 9: 945–967, 1992Google Scholar
  41. Rzhetsky, A. and Nei, M. Theoretical foundation of the minimum-evolution method of phylogenetic inference.J Mol Evol 38: 295–299, 1993Google Scholar
  42. Saitou, N. and Nei, M. The neighbor-joining method: a new method for reconstructing phyologenetic trees.Mol Biol Evol 4: 406, 1987PubMedGoogle Scholar
  43. Satta, Y. How the ratio of nonsynonymous to synonymous pseudogene substitutions can be less than one.Immunogenetics 38: 450–454, 1993PubMedGoogle Scholar
  44. Schonbach, C. and Klein, J. The Alu repeats of the primate DRB genes. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp 243–255, Springer, Berlin Heidelberg, 1991Google Scholar
  45. She, J. X. and Wakeland, E. K. Molecular and genetic mechanisms involved in the generation of Mhc diversity. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp. 139–154, Springer, Berlin Heidelberg, 1991Google Scholar
  46. Slade, R. W. Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology.Proc R Soc Lond B 249: 163–171, 1992Google Scholar
  47. Takasaki, N., Murata, S., Saitoh, M., Kobayashi, T., Park, L., and Okada, N. Species-specific amplification of tRNA-derived short interspersed repetitive elements (SINEs) by retroposition: a process of parasitization of entire genomes during the evolution of salmonids.Proc Natl Acad Sci 91: 10153–10157, 1994PubMedGoogle Scholar
  48. Thomas, W. K. and Beckenbach, A. T. Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution.J Mol Biol 29: 233–245, 1989Google Scholar
  49. Thomas, W. K., Withler, R. E., and Beckenbach, A. T. Mitochondrial DNA analysis of Pacific salmonid evolution.Can J Zool 64: 1058–1064, 1986Google Scholar
  50. Trowsdale, J., Groves, V., and Arnason, A. Limited MHC polymorphism in whales.Immunogenetics 29: 19–24, 1989PubMedGoogle Scholar
  51. Trowsdale, J. “Both man & bird & beast”: comparative organization of MHC genes.Immunogenetics 41: 1–17, 1995PubMedGoogle Scholar
  52. Utter, F. M., Allendorf, F. W., and Hodgins, H. O. Genetic variability and relationships in Pacific salmon and related trout based on protein variations.Syst Zool 22: 257–270, 1973Google Scholar
  53. Ye, Y., She, J., and Wakeland, E. K. Diversification of class II Au within the genusMus. In J. Klein and D. Klein (eds.):Molecular Evolution of the Major Histocompatibility Complex, pp. 131–138, Springer, Berlin Heidelberg, 1991Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • K. M. Miller
    • 1
  • R. E. Withler
    • 1
  1. 1.Department of Fisheries and Oceans, Science BranchPacific Biological StationNanaimoCanada

Personalised recommendations