Advertisement

Journal of Statistical Physics

, Volume 85, Issue 5–6, pp 639–679 | Cite as

Quantum chaotic dynamics and random polynomials

  • E. Bogomolny
  • O. Bohigas
  • P. Leboeuf
Articles

Abstract

We investigate the distribution of roots of polynomials of high degree with random coefficients which, among others, appear naturally in the context of “quantum chaotic dynamics.” It is shown that under quite general conditions their roots tend to concentrate near the unit circle in the complex plane. In order to further increase this tendency, we study in detail the particular case of self-inversive random polynomials and show that for them a finite portion of all roots lies exactly on the unit circle. Correlation functions of these roots are also computed analytically, and compared to the correlations of eigenvalues of random matrices. The problem of ergodicity of chaotic wavefunctions is also considered. For that purpose we introduce a family of random polynomials whose roots spread uniformly over phase space. While these results are consistent with random matrix theory predictions, they provide a new and different insight into the problem of quantum ergodicity Special attention is devoted to the role of symmetries in the distribution of roots of random polynomials.

Key Words

random polynomials chaotic dynamics quantum mechanics semiclassical approximations random matrix theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds.,Chaos et Physique Quantique/Chaos and Quantum Physics, (Elsevier, Amsterdam, 1991).Google Scholar
  2. 2.
    P. Cvitanovic, I. C. Percival, and A. Wirzba, eds., Quantum Chaos-Theory and Experiment,CHAOS J. 2(1) (1992).Google Scholar
  3. 3.
    A. T. Bharucha-Reid and M. Sambandham,Random Polynomials (Academic Press, 1986).Google Scholar
  4. 4.
    M. Marden,Geometry of Polynomials (American Mathematical Society, Providence, Rhode Island, 1966).Google Scholar
  5. 5.
    M. Kac,Probability and Related Topics in Physical Sciences (Interscience, New York, 1959).Google Scholar
  6. 6.
    E. Bogomolny, O. Bohigas, and P. Leboeuf,Phys. Rev. Lett. 68:2726 (1992).Google Scholar
  7. 7.
    J. Ginibre,J. Math. Phys. 6:440 (1965).Google Scholar
  8. 8.
    B. Jancovici,Phys. Rev. Lett. 46:386 (1981).Google Scholar
  9. 9.
    B. L. Altshuler, P. A. Lee, and R. A. Webb, eds.,Mesoscopic Phenomena in Solids (North-Holland, Amsterdam, 1991).Google Scholar
  10. 10.
    E. Bogomolny,Comm. Atomic Mol. Phys. 25:63 (1990);Nonlinearity 5:805 (1992).Google Scholar
  11. 11.
    M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros,Ann. Phys. (NY)122:26–63 (1979).Google Scholar
  12. 12.
    M. Saraceno and A. Voros,Chaos 2:99 (1992).Google Scholar
  13. 13.
    M. L. Mehta,Random Matrices (Academic Press, New York, 1991).Google Scholar
  14. 14.
    O. Bohigas, InChaos et Physique Quantique/Chaos and Quantum Physics, M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1991).Google Scholar
  15. 15.
    P. Leboeuf and A. Voros,J. Phys. A: Math. Gen. 23:1765 (1990).Google Scholar
  16. 16.
    P. Leboeuf,J. Phys. A: Math. Gen. 24:4575 (1991).Google Scholar
  17. 17.
    E. Bogomolny and C. Schmit,Nonlinearity 6:523 (1993).Google Scholar
  18. 18.
    J. E. Dunnage,Proc. Lond. Math. Soc. 16:53 (1966).Google Scholar
  19. 19.
    A. Edelman and E. Kostlan,Bull. Am. Math. Soc. 32:1 (1995).Google Scholar
  20. 20.
    M. S. Longuet-Higgins,Proc. R. Soc. A 246:99 (1958).Google Scholar
  21. 21.
    J. R. Klauder and B. Skagerstam,Coherent States (World Scientific, Singapore, 1985).Google Scholar
  22. 22.
    A. Perelomov,Generalized Coherent States and Their Applications (Springer, New York, 1986).Google Scholar
  23. 23.
    A. Voros,Ann. Inst. H. Poincaré A 24:31 (1976);Ann. Inst. H. Poincaré A 26:343 (1977).Google Scholar
  24. 24.
    O. Bohigas, M. J. Giannoni, and C. Schmit,Phys. Rev. Lett. 52:1 (1984).Google Scholar
  25. 25.
    F. Haake,Quantum Signature of Chaos (Springer-Verlag, Berlin, 1991).Google Scholar
  26. 26.
    P. Leboeuf and P. Shukla, Universal fluctuations of zeros of chaotic wavefunctions, to appear inJ. Phys. A: Math. Gen. Google Scholar
  27. 27.
    J. Hannay,J. Phys. A: Math. Gen. 29:101 (1996).Google Scholar
  28. 28.
    F. Haake, M. Kuś, and R. Sharf,Z. Phys. B-Condensed Matter 65:381 (1987).Google Scholar
  29. 29.
    P. Leboeuf, Statistical theory of chaotic wavefunctions, submitted for publication.Google Scholar
  30. 30.
    V. Bargmann,Commun. Pure Appl. Math. 14:187 (1961);20:1 (1967).Google Scholar
  31. 31.
    C. N. Yang and T. D. Lee,Phys. Rev. 87:404 (1952).Google Scholar
  32. 32.
    B. Derrida,Physica A 177:31 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • E. Bogomolny
    • 1
  • O. Bohigas
    • 1
  • P. Leboeuf
    • 1
  1. 1.Division de Physique Théorique (Unité de recherche des Universités de Paris XI et Paris VI associée au CNRS)Institut de Physique NucléaireOrsay CedexFrance

Personalised recommendations