, Volume 20, Issue 4, pp 398–403 | Cite as

Quantification of ECoG stages of sleep in the bottlenose dolphin

  • L. M. Mukhametov
  • A. I. Oleksenko
  • I. G. Polyakova


Single-hemisphere low-wave sleep was shown to be the dominant form of natural sleep according to quantitative analysis of duration of ECoG sleep phases. Combined variants of bilateral and unilateral ECoG synchronization total 33.4% of the 24-h cycle, of which unilateral slow-wave sleep accounts for 28.8%. Each of the bottlenose dolphin's two hemispheres remains in a state of slow-wave ECoG for an average of 19% of the cycle. The highest percentage duration of sleep occurred during the afternoon and nighttime. Overall duration of ECoG synchronization may differ in the two hemispheres but evens out in the dolphin over a number of 24-h cycles. Spells of single-hemisphere sleep tend to alternate between the two different hemispheres.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. M. Mukhametov, “Comparative physiology of sleep in mammals,” in: Achievements of Science and Technology (Human and Animal Physiology series),31, 111–177 (1986).Google Scholar
  2. 2.
    L. M. Mukhametov, O. I. Lyamin, and I. G. Polyakova, “Sleep and waking in North Sea Seals,” Zh. Vyssh. Nerv. Deyat.,34, No. 3, 465–471 (1984).Google Scholar
  3. 3.
    L. M. Mukhametov and I. G. Polyakova, “Electroencephalographic research into sleep in the common porpoise,” Zh. Vyssh. Nerv. Deyat.,31, No. 2, 333–339 (1981).Google Scholar
  4. 4.
    L. M. Mukhametov and A. Ya. Supin, “Sleep and waking in dolphins” in: Marine Mammals: Research Techniques and Results, Nauka, Moscow (1978), pp. 66–77Google Scholar
  5. 5.
    L. M. Mukhametov, A. Ya. Supin, and I. G. Strokova, “Interhemisphere asymmetry of functional brain state during sleep in dolphins,” Dokl. Akad. Nauk. SSSR,229, No. 3, 767–770 (1976).Google Scholar
  6. 6.
    J. M. Affanni and E. Morita, “Asimetria bioeléctica de las cortezas de ambos hemisferios cerebrales en el marsupial (Didelphis azarae). Effectos de la seccion de las comisuras telencefálie cas,” Rev. Soc. Argent. Biol.,42, No. 5/8, 99–105 (1966)Google Scholar
  7. 7.
    T. Allison, H. Van Twyver, and W. R. Goff, “Electrophysiological studies of the echidna,Tachyglossus aculeatus. 1. Waking and sleep,” Arch. Ital. Biol.,110, No. 2, 145–184 (1972).Google Scholar
  8. 8.
    N. J. Ball, C. J. Amlaner, J. P. Shaffery, and M. R. Opp, “Asynchronous eye closure and hemispheric quiet sleep of birds,” Abstr. 8th Eur. Congr. Sleep Research, Szeged, 19 (1986).Google Scholar
  9. 9.
    G. Berlucchi, “Electroencephalographic studies in “split brain” cats,” Electroencephalogr. Clin. Neurophysiol.,20, No. 3, 348–356 (1966).Google Scholar
  10. 10.
    F. Michel, “Sleep and waking in cats with various sagittal sections of the brain,” In: Cerebral Interhemispheric Relations, J. Gernáček and F. Podivinský, editors, Bratislava (1972), pp. 83–97.Google Scholar
  11. 11.
    L. M. Mukhametov, “Sleep in marine mammals,” Exp. Brain Res., Suppl. 8, 227–238 (1984).Google Scholar
  12. 12.
    L. M. Mukhametov, A. Y. Supin, and I. G. Polyakova, “Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins,” Brain Res.,134, No. 3, 581–584 (1977).Google Scholar
  13. 13.
    K. S. Norris and T. P. Dohl, “The structure and functions of cetacean schools,” In: Cetacean Behavior: Mechanisms and Functions, L. M. Herman, editor, John Wiley & Sons, New York (1980), pp. 211–261.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • L. M. Mukhametov
  • A. I. Oleksenko
  • I. G. Polyakova

There are no affiliations available

Personalised recommendations