International Journal of Biometeorology

, Volume 25, Issue 4, pp 309–321 | Cite as

Electroculture for crop enhancement by air anions

  • H. A. Pohl
  • G. W. Todd


Electroculture, the practice of applying strong electric fields or other sources of small air ions to growing plants, has potential to markedly increase crop production and to speed crop growth. The considerable evidence for its effectiveness, and the studies of the mechanisms for its actions are discussed. A mild current of air anions (4 pA/cm2) stimulates bean crop growth and also earlier blossoming and increased growth in the annual,Exacum affine (Persian violet), as well as in seedling geraniums. The present results would indicate that the growing period required until the plants reach a saleable stage of maturity can be shortened by about two weeks under greenhouse conditions.


Plant Physiology Crop Production Crop Growth Greenhouse Condition Considerable Evidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDERSON, I., and VAD, E. (1965): The influence of electric fields on bacterial growth. Int. J. Biometeor., 9: 211–218.Google Scholar
  2. BACHMAN, C. H. and REICHMANS, M. (1973): Barley leaf tip damage resulting from exposure to high electrical fields. Int. J. Biometeor., 17: 243–251.Google Scholar
  3. BACHMAN, C. H., HADEMANOS, D. G. and UNDERWOOD, L. W. (1971): Ozone and air ions accompanying biological implications of electrical fields. J. Atmos. Terr. Phys., 33: 497–505.Google Scholar
  4. BECCARIA, G. (1775): Della elettricita terrestre atmosferica a Cielo Sereno. Torino.Google Scholar
  5. BENTRUP, F. W. (1968): Die Morphogenese pflanzlicher Zellen im electrischen Feld. Z. Pflanzenphysiol., 59: 309–339.Google Scholar
  6. BERTHOLON, M. (1783): De l'electricité des végétaux, Paris.Google Scholar
  7. BLACK, J. D., FORSYTH, F. R., FENSOM, D. S. and ROSS, R. B. (1971): Electrical stimulation and its effects on growth and ion accumulation in tomato plants. Canad. J. Bot., 49: 1809–1815.Google Scholar
  8. BLACKMAN, V. H. (1924): Field experiments in electro-culture. J. agr. Sci. 14: 240–257.Google Scholar
  9. BLACKMAN, V. H., LEGG, A. T. and GREGORY, F. G. (1923): The effect of a direct current of very low intensity on the rate of growth of the coleoptile of barley. Proc. roy. Soc. B, 95: 214–228.Google Scholar
  10. BRIGGS, L. J. (1938): In: Physiology of Plants. W. Seifriz (ed.), J. Wiley and Sons, New York.Google Scholar
  11. BRIGGS, L. J., CAMPBELL, A. B., HEALD, R. H. and FLINT, L. H. (1926): Electroculture. U.S. Dept. of Agric. Bulletin #1379.Google Scholar
  12. CLARK, W. M. (1937): Electrical polarity and auxin transport. Plant Physiol., 12: 409–440.Google Scholar
  13. COLLINS, G., FLINT, L. H. and MCLANE, J. W. (1929): Electric stimulation of plant growth. J. agr. Res. 38: 585–600.Google Scholar
  14. FEDER, W. A. and SULLIVAN, F. (1969): Ozone; depression of frond multiplication and floral production in duckweed. Science, 165: 1373–1374.Google Scholar
  15. GARDINI, C. (1784): De influxu electricitatis atmosphericae in vegetantia. Turin, Dissertation.Google Scholar
  16. GASSNER, G. (1907): Zur Frage der Elektrokultur. Ber. dtsch Bot. Ges. 25: 26–38.Google Scholar
  17. GRANDEAU L. (1878): Comt. rend. Soc. biol. 87: 60–2, 285–7, 939–40. pp. 60–62 De l'influence de l'électricité atmosphérique sur la nutrition des plantes; pp. 265–267 De l'influence de l'électricité atmosphérique sur la végétation; pp. 939–940 De l'influence de l'électricité atmosphérique sur la fructification des végétaux.Google Scholar
  18. GRANDEAU, L. (1879): De l'influence de l'électricité atmosphérique sur la nutrition des vegetaux. Ann. Chime 16: 145–226.Google Scholar
  19. HIGINBOTHAM, H. (1973): Electropotentials of cells. Ann. Rev. Plant Physiol., 24: 25–46.Google Scholar
  20. IGENHAUSZ, J. (1788): Lettre à M. Molitor au sujet de l'influence de l'électricité atmosphérique sur les végétaux. J. Physique, l'abbé Rozler.Google Scholar
  21. KOTAKA, A. and KRUEGER, A. P. (1967): Studies on the air-ion induced growth in higher plants. Adv. Frontiers plant Sci. 20: 115–208.Google Scholar
  22. KOTAKA, S. and KRUEGER, A. P. (1972): Air ion effects on RNAase activity in green barley leaves. Int. J. Biometeor., 16: 1–11.Google Scholar
  23. KOTAKA, S., KRUEGER, A. P. and ANDRIESE, P. C. (1968): Effect of air ions on light-induced swelling and dark-induced shrinking of isolated chloroplasts. Int. J. Biometeor., 12: 85–92.Google Scholar
  24. KRUEGER, A. P. (1969): Preliminary consideration of the biological significance of air ions. Scientia, 104: 460–476.Google Scholar
  25. KRUEGER, A. P. and REED, E. J. (1976): Biological impact of small air ions. Science, 193: 1209–1213.Google Scholar
  26. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, P. C. (1962): Some observations on the physiological effects of gaseous ions. Int. J. Biometeor., 6: 33–48.Google Scholar
  27. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, P. C. (1963): A study of the mechanism of air-ion induced growth stimulation inHordeum vulgaris. Int. J. Biometeor., 8: 17–25.Google Scholar
  28. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, P. C. (1964): Studies on air-ion enhanced iron chlorosis. I. Active and residual iron. Int. J. Biometeor., 8: 5–16.Google Scholar
  29. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, P. C. (1965): Effect of abnormally low concentrations of air ions on the growth ofHordeum vulgaris. Int. J. Biometeor., 9: 201–209.Google Scholar
  30. KRUEGER, A. P., KOTAKA, A. and REED, E. J. (1973): The effects of air-ions on plants. Congress International. Le Soleil au Service de l'Homme, Paris, July.Google Scholar
  31. KRUEGER, A. P., STRUBBE, A. E., YOST, M. B. and REED, E. J. (1978): Electric fields, small air ions and biological effects. Int. J. Biometeor. 22: 210–212.Google Scholar
  32. LEMSTROM, S. (1904): Electricity in agriculture and horticulture, D. van Nostrand. London.Google Scholar
  33. MURR, L. E. (1963): Plant growth response in a simulated electric field environment. Nature (Lond.), 200: 490.Google Scholar
  34. MURR, L. E. (1964): Mechanism of plant-cell damage in an electrostatic field. Nature (Lond.), 201: 1305–1306.Google Scholar
  35. MURR, L. E. (1965a): Biophysics of plant growth in an electrostatic field. Nature (Lond.), 206: 467–470.Google Scholar
  36. MURR, L. E. (1965b): Plant growth response in an electrokinetic field. Nature (Lond.), 207: 1177–1178.Google Scholar
  37. MURR, L. E. (1966a): Physiological stimulation of plants using delayed and regulated electric field environments. Int. J. Biometeor., 10: 147–153.Google Scholar
  38. MURR, L. E. (1966b): Plant physiology in simulated geoelectric and geomagnetic fields. Adv. Frontiers Plant Sci., 15: 97–120.Google Scholar
  39. MURR, L. E. (1966c): The biophysics of plant growth in a reversed electrostatic field; a comparison with conventional electrostatic and electrokinetic field growth responses. Int. J. Biometeor., 10: 135–146.Google Scholar
  40. NYROP, J. E. (1946): A specific effect of high frequency electric currents on biological objects. Nature (Lond.), 157: 51.Google Scholar
  41. POHL, H. A. (1978): Electroculture. J. Biol. Physics., 5: 3–23.Google Scholar
  42. PRATT, R. (1962): Effect of ionized air on early growth of black mustard seedlings. J. Pharm. Sci., 51: 184–185.Google Scholar
  43. SALE, A. J. H. and HAMILTON, W. A. (1967): Effects of high electrical fields on micro-organisms. I. Killing of bacteria and yeasts. Biochim. biophys. Acta (Amst.), 148: 781–788. II. Mechanisms of action of lethal effect. Biochim. biophys. Acta (Amst.), 148: 789–800.Google Scholar
  44. SHARP, E. L. (1967): Atmospheric ions and germination of uredospores ofPuccinia striifornis. Science, 156: 1359–1360.Google Scholar
  45. SIDAWAY, G. H. (1966): Influence of electrostatic fields on seed germination. Nature (Lond.), 203: 303.Google Scholar
  46. SIDAWAY, G. H. and ASPRAY, G. F. (1968): Influence of electrostatic fields on plant respiration. Int. J. Biometeor., 12: 321–329.Google Scholar
  47. SMITH, R. F. and FULLER, W. H. (1961): Identification and mode of action of a component of positively-ionized air causing enhanced growth in plants. Plant Physiol., 36: 747–751.Google Scholar
  48. STERSKY, A., HELDMAN, D. R. and HEDRICK, T. I. (1970): Effect of a bipolar oriented electric field on micro-organisms. J. Milk Foods Tech., 33: 545–549.Google Scholar
  49. STURGEON, W. (1846): On the electro-culture of farm crops. J. Highland and Agr. Soc., 262–299.Google Scholar
  50. WENT, F. W. (1932): Eine botanische Polarisationstheorie. Jb. wiss. Bot., 76: 528–557.Google Scholar
  51. WHEATON, F. W., LOVELY, W. G. and BOCKHOP, C. W. (1971): Effects of static and 60 Hz electrical fields on the germination rate of corn and soy beans. Trans. ASAE: 339–342.Google Scholar

Copyright information

© Swets & Zeitlinger B.V. 1981

Authors and Affiliations

  • H. A. Pohl
  • G. W. Todd
    • 1
    • 2
  1. 1.Dept. of Physics and School of Biological SciencesUSA
  2. 2.Oklahoma State University StillwaterOklahomaUSA

Personalised recommendations