Advertisement

International Journal of Primatology

, Volume 14, Issue 1, pp 167–175 | Cite as

Phylogeny of the slow lorises (genusNycticebus): An approach using mitochondrial DNA restriction enzyme analysis

  • Ya-ping Zhang
  • Zhi-ping Chen
Article

Abstract

Mitochondrial DNA polymorphisms in 15 specimens of three species of slow lorises-Nycticebus coucang, N. intermedius, andN. pygmaeus-were analyzed in order to study the evolutionary relationships among the species. Eight restriction types were observed in the samples. Phylogenetic trees constructed on the basis of genetic distances showed that the slow lorises sort into two clusters: four types ofN. coucang and three types ofN. intermedius plus one type ofN. pygmaeus. Our results suggest that there are two valid species in the genusNycticebus-N. coucang, andN. pygmaeus-and thatN. intermedius should be included withinN. pygmaeus. Divergence between the two species may have begun 2.7 Ma (million years ago). Evolution of gross morphology, chromosomes, and mitochondrial DNA in the slow lorises appears to be concordant.

Key Words

Nycticebus phylogeny mitochondrial DNA Restriction enzyme analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. and Saunders N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics.Annu. Rev. Ecol. Syst. 18: 489–522.Google Scholar
  2. Brown, G. G., and Simpson, M. V. (1981). Intra- and interspecific variation of the mitochondrial genome inRattus norvegicus andRattus rattus: Restriction enzyme analysis of variant mitochondrial DNA molecules and their evolutionary relationships.Genetics 97: 125–143.Google Scholar
  3. Brown, W. M. (1980). Polymorphism in mitochondrial DNA of human as revealed by restriction endonuclease analysis.Proc. Natl. Acad. Sci. USA 77: 3605–3609.Google Scholar
  4. Brown, W. M. (1983). Evolution of animal mitochondrial DNA. In Nei, M., and Koehn, R. K. (eds.),Evolution of Genes and Proteins, Sinauer, Sunderland, Mass., pp. 62–88.Google Scholar
  5. Brown, W. M., George, M., Jr., and Wilson, A. C. (1979). Rapid evolution of animal mitochon-drial DNA.Proc. Natl. Acad. Sci. USA 76: 1967–1971.Google Scholar
  6. Brown, W. M., Prager, E. M., Wang, A., and Wilson, A. C. (1982). Mitochondrial DNA sequences of primates: Tempo and mode of evolution.J. Mol. Evol. 18: 225–239.Google Scholar
  7. Corbet, G. B., and Hill, J. E. (1991).A World List of Mammalian Species, British Museum (Natural History), Oxford.Google Scholar
  8. Dao, V. T. (1960). Sur un nouvelle especedNycticebus, au Vietnam.Zool. Anz. 164: 240–243.Google Scholar
  9. Easteal, S. (1991). The relative rate of DNA evolution in primates.Mol. Biol. Evol. 8: 115–127.Google Scholar
  10. Ferris, S. D., Brown, W. M., Davidson, W. S., and Wilson, A. C. (1981). Extensive polymorphism in the mitochondrial DNA of apes.Proc. Natl. Acad. Sci. USA 78: 6319–6323.Google Scholar
  11. Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U., and Wilson, A. C. (1983). Mitochondrial DNA evolution in mice.Genetics 105: 681–721.Google Scholar
  12. Groves, C. P. (1971). Systematics of the genusNycticebus.Proc. 3rd Int. Congr. Primatol., Zurich 1970, Vol. 1, Basel, Karger, pp. 44–53.Google Scholar
  13. Harihara, S., Saitou, N., Hirai, M., Aoto, N., Terao, K., Cho, F., Honjo, S., and Omoto, K. (1988). Differentiation of mitochondrial DNA types inMacaca fascicularis.Primates 29: 117–127.Google Scholar
  14. Hayasaka, K., Horai, S., Gojobori, T., Shotake, T., Nozawa, K., and Matsunaga, E. (1988). Phylogenetic relationships among Japanese, rhesus, Formasan, and crab-eating monkeys, inferred from restriction-enzyme analysis of mitochondrial DNAs.Mol. Biol. Evol. 5: 270–281.Google Scholar
  15. Hill, W. C. O. (1953).Primates: Comparative Anatomy and Taxonomy, Vol. 1. Strepsirhini, New York, pp. 159–163.Google Scholar
  16. Lansman, R. A., Shade, R. O., Shapira, J. F., and Avise, J. C. (1981). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations, III. Techniques and potential applications,J. Mol. Evol. 17: 214–226.Google Scholar
  17. Nei, M., and Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc. Natl. Acad. Sci. USA 76: 5269–5273.Google Scholar
  18. Nowak, R. M., and Paradiso, J. L. (1983).Walker's, Mammals of the World, University Press, Baltimore and London, pp. 361–363.Google Scholar
  19. Petter, J. J., and Petter-Rousseaux, A. (1979). Classification of the prosimians. In Doyle, G. A., and Martin, R. D. (eds.),The Study of Prosimian Behavior, Academic Press New York, pp. 281–286.Google Scholar
  20. Saitou, N., and Nei, M. (1987). The neighbour-joining method: A new method for reconstruction phylogenetic tree.Mol. Biol. Evol. 4: 406–425.Google Scholar
  21. Sneath, P. H. A., and Sokal, R. R. (1973).Numerical Taxonomy: The Principles and Practice of Numerical Classification, W. H. Freeman, San Francisco.Google Scholar
  22. Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Jr., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D., and Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics.Biol. Linn. Soc. 26: 375–400.Google Scholar
  23. Zhang, Y. P., and Shi, L. M. (1989). Mitochondrial DNA polymorphism in five species ofMacaca. Chine.J. Genet. 16: 325–338.Google Scholar
  24. Zhang, Y. P., Zhang, P., and Shi, L. M. (1989). Restriction maps of mitochondrial DNA of slow loris and tree shrew.Zool. Res. 10 (Suppl): 79–89.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Ya-ping Zhang
    • 1
  • Zhi-ping Chen
    • 1
  1. 1.Laboratory of Cellular and Molecular Evolution ,Kunming Institute of ZoologyAcademia SinicaKunmingChina

Personalised recommendations