Advertisement

Calcified Tissue Research

, Volume 6, Issue 1, pp 1–10 | Cite as

Lipids of bovine enamel and dentin and human bone

  • Thomas R. Dirksen
  • G. V. Marinetti
Original Papers

Abstract

Three different materials were studied: bovine dentin, bovine enamel, and human cortical bone. Lipids extracted from pulverized tissues were analyzed qualitatively by paper chromatography and quantitatively by column chromatography. Sample materials were also demineralized and extracted a second time so that results could be compared to those obtained prior to demineralization. Fatty acids of bone lipids were investigated by vapor phase chromatography and compared to the fatty acids of trabecular bone and bone marrow.

Calcified tissues were found to contain cholesterol, cholesterol esters, monoglycerides, diglycerides, triglycerides, free fatty acids, and various phospholipids. With some exceptions, such as bovine enamel where phospholipids could not be identified, these included lecithin, lysolecithin, cephalin, lysocephalin, monophosphoinositide, sphingomyelin, and substances which might be phosphatidic acid and cardiolipin. Phosphatidylserine was extractable from bovine dentin only after demineralization, but was removable from bone both before and after EDTA treatment.

Additional lipids were obtained from sample materials if they were demineralized with EDTA and extracted a second time. The total lipids extracted from the tissues averaged 20.28 mg/100 g dentin, 1.97 mg/100 g enamel, and 2,005 mg/100 g human bone. The major portion of human cortical bone lipids was triglyceride and the fatty acid composition was similar to that of marrow and trabecular bone.

Key words

Bone Dentin Enamel Lipids Calcification 

Résumé

Le but de cette étude est l'analyse des lipides des tissus calcifiés au niveau de la dentine et de l'émail bovins et de l'os cortical humain. Les lipides extraits des tissues pulvérisés sont analysés qualitativement par chromatographie sur colonne. Des échantillons ont été déminéralisés et une seconde extraction a permis de comparer les résultats obtenus avec ceux de la première analyse. Les acides gras des lipides osseux sont étudiés par chromatographie en phase gazeuse et comparés à ceux de l'os spongieux et des expaces médulaires.

Les tissus calcifiés contiennent du cholestérol et ses esters, des monoglycérides, des diglycérides, des triglycérides, des acides gras libres et divers phospholipides. A part certains cas, et en particulier l'émail bovin, où l'on n'a pas pu identifier des phospholipides, ces derniers sont constitués par de la lécithine, la lyso-lécithine, l'éthanolamine de phosphatidyle, la sphingomyéline, ainsi que par des substances qui pourraient être de l'acide phosphatidique et de la cardiolipine. La sérine de phosphatidyle a pu être isolée de la dentine bovine, seulement après déminéralisation, mais a pu être extrait de l'os à la avant et, après traitement à l'EDTA.

D'autres lipides sont recueillis après déminéralisation à l'EDTA et une seconde dé minéralisation. Les lipides totaux extraits sont d'environ 20.28 mg/100 grammes de dentine, 1.97 mg/100 grammes d'émail et 2005 mg/100 grammes, d'os humain. Le constituant lipidique principal de l'os cortical humain est le triglycéride et la composition en acide gras est identique à celle de l'os spongieux et de la moëlle.

Zusammenfassung

Drei verschiedene Materialien wurden untersucht: bovines Dentin, boviner Schmelz und menschliche Corticalis. Die aus den pulverisierten Geweben extrahierten Lipide wurden qualitativ mittels Säulenchromatographie analysiert. Die Proben wurden ebenfalls demineralisiert und ein zweites Mal extrahiert, damit die Resultate mit denjenigen vor der Demineralisation verglichen werden konnten. Die Fettsäuren der Knochenlipide wurden mittels Gaschromatographie untersucht und mit den Fettsäuren der Spongiosa und des Markes verglichen. In den verkalkten Geweben fanden sich Cholesterol, Cholesterolester, Monoglyceride, Diglyceride, Triglyceride, freie Fettsäuren und verschiedene Phospholipide. Mit einigen Ausnahmen, wie z. B. in bovinem Schmelz, wo Phospholipide nicht nachgewiesen werden konnten, bestanden diese Phospholipide aus Lecithin, Lysolecithin, Phosphatidyläthanolamin, Lysophosphatidyläthanolamin, Phosphatidylinositol, Sphingomyelin und Substanzen, welche Phosphatidsäure und Cariolipin sein könnten. Aus bovinem Dentin konnte Phosphatidylserin nur nach Demineralisation extrahiert werden; aus Knochen ließ es sich jedoch sowohl vor wie nach EDTA-Behandlung entfernen.

Zusätzliche Lipide wurden aus Proben gewonnen, wenn diese mit EDTA demineralisiert und ein zweites Mal extrahiert wurden. Die gesamte aus den Geweben extrahierte Lipidmenge betrug im Mittel 20,28 mg/100 g Dentin, 1,97 mg/100 g Schmelz und 2005 mg/100 g menschlichen Knochen. Der Hauptteil der Lipide aus menschlicher Corticalis bestand aus Triglyceriden und die Zusammensetzung der Fettsäuren entsprach jener im Mark und in der Spongiosa.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    Allred, H.: The differential staining of peritubular and intertubular matrices in human dentine. Arch. oral Biol.13, 1–11 (1968).CrossRefPubMedGoogle Scholar
  2. 1b.
    —: The staining of the lipids in human dentine matrix. Arch. oral Biol.13, 433–444 (1968).CrossRefPubMedGoogle Scholar
  3. 2.
    Bader, H.: The uptake of inorganic phosphate by the lipid extract of rat liver. Biochim. biophys. Acta (Amst.)65, 178–180 (1962).CrossRefGoogle Scholar
  4. 3.
    Dirksen, T. R.: Lipid components of sound and carious dentin. J. dent. Res. 42, 128–132 (1963).PubMedGoogle Scholar
  5. 4.
    —, Ikels, K. G.: Quantitative determination of some constituent lipids in human dentin. J. dent. Res.43, 246–251 (1964).PubMedGoogle Scholar
  6. 5.
    Dirksen, T. R.: Extraction of phosphatidyl serine from calvaria. Preprinted Abstracts, Inter. Assoc. for Dental Res. Abstract 184 (1968).Google Scholar
  7. 6.
    Entenman, C.: Methods of enzymology, p. 299. New York: Academic Press 1957.Google Scholar
  8. 7.
    Fels, I.: Binding of calcium ions by the aorta. Nature (Lond.)190, 1012–1013 (1961).Google Scholar
  9. 8.
    Folch, J., Lees, M., Sloane Stanley, G. H.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem.226, 497–509 (1957).PubMedGoogle Scholar
  10. 9.
    Ikels, K. G.: The separation of serum lipids into four major components by silicic acid chromatography. SAM Report 61-108 (1961).Google Scholar
  11. 10.
    Irving, J. T.: The sudanophil material at sites of calcification. Arch. oral Biol.8, 735–745 (1963).CrossRefGoogle Scholar
  12. 11.
    —, Wuthier, R. E.: Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin. Orthop.56, 237–260 (1968).PubMedGoogle Scholar
  13. 12.
    Leach, A. A.: The lipids of ox compact bone. Biochem. J.69, 429–432 (1958).PubMedGoogle Scholar
  14. 13.
    Lund, P. K., Abadi, D. M., Mathies, J. C.: Lipid composition of normal human bone marrow as determined by column chromatography. J. Lipid Res.3, 95–98 (1962).Google Scholar
  15. 14.
    Marinetti, G. V.: Chromatographic separation, identification, and analysis of phosphatides. J. Lipid Res.3, 1–20 (1962).Google Scholar
  16. 15.
    Erbland, J. F., Brossard, M.: Metabolism and physiological significance of lipids, p. 71. London: John Wiley and Sons 1964.Google Scholar
  17. 16.
    Robinson, L. G., Pugh, E. R.: The determination of serum cholesterol. U. S. armed Forces med. J.9, 501–506 (1958).PubMedGoogle Scholar
  18. 17.
    Schlenk, H., Gellerman, J. L.: Esterfication of fatty acids with diazomethane on a small scale. Analyt. Chem.32, 1412–1414 (1960).CrossRefGoogle Scholar
  19. 18.
    Shapiro, I. M., Wuthier, R. E., Irving, J. T.: A study of the phospholipids of bovine dental tissues-I. Enamel matrix and dentin. Arch. oral Biol.11, 501–512 (1966).CrossRefPubMedGoogle Scholar
  20. 19.
    Snyder, F., Stephens, N.: A simplified spectrophotometric determination of ester groups in lipids. Biochim. biophys. Acta. (Amst.)34, 244–245 (1959).CrossRefGoogle Scholar
  21. 20.
    Wuthier, R. E.: Two-dimensional chromatography on silica gelloaded paper for the micronalysis of polar lipids. J. Lipid Res.7, 544–550 (1966).PubMedGoogle Scholar
  22. 21.
    —: Lipids of mineralizing epiphyseal tissues in the bovine fetus. J. Lipid. Res.9, 68–78 (1968).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Thomas R. Dirksen
    • 1
  • G. V. Marinetti
    • 1
  1. 1.School of Medicine and DentistryUniversity of RochesterRochester

Personalised recommendations