Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Extension theories for monoids

  • 31 Accesses

  • 15 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Barr, M. and J. Beck,Acyclic models and triples, Proc. Conference on Categorical Algebra 1965, Springer-Verlag (1966).

  2. 2.

    Barr, M. and J. Beck,Homology and standard constructions, Seminar on Triples and Categorical Homology Theory, Springer Lecture Notes in Math. 80 (1969), 245–335.

  3. 3.

    Beck, J. Triples,Algebras and Cohomology, Dissertation, Columbia University (1967). University Microfilms #67-14,023.

  4. 4.

    Duskin, J.,K(π,n)-torsors and the interpretation of “triple” cohomology, Proc. Nat. Acad. Sci. USA 71 (1974), 2554–2557

  5. 5.

    Duskin, J.,Simplicial methods and the interpretation of “triple” cohomology, Memoirs A.M.S. 163(1975).

  6. 6.

    Grillet, P.,Left coset extensions, Semigroup Forum 7 (1974), 200–263.

  7. 7.

    Howie J.,An Introduction to Semigroup Theory, Academic Press (1976).

  8. 8.

    Leech, J.,ℋ-coextensions of monoids, Mem. A.M.S. 157 (1975).

  9. 9.

    Leech, J.,The cohomology of monoids, preprint.

  10. 10.

    Linton, F.,Some aspects of equational categories, Proc. Conference on Categorical Algebra 1965 , Springer-Verlag (1966).

  11. 11.

    Mac Lane, S.,Categories for the Working Mathematician, Springer-Verlag (1971).

  12. 12.

    Manes, E.,Algebraic Theories, Springer-Verlag (1976).

  13. 13.

    Wells, C., A triple in Cat, preprint.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wells, C. Extension theories for monoids. Semigroup Forum 16, 13–35 (1978). https://doi.org/10.1007/BF02194611

Download citation