Advertisement

Pharmaceutisch weekblad

, Volume 3, Issue 1, pp 1042–1047 | Cite as

Direct determination of arsenic in urine by differential pulse anodic stripping voltammetry

  • J. P. Franke
  • R. A. De Zeeuw
Original Articles

Abstract

Various parameters affecting the behaviour of arsenic in differential pulse anodic stripping voltammetry (Dpasv) have been studied, such as the electrodeposition potential, working electrode, electrolysis time and the nature of the electrolyte solution. It was found that under suitable conditions arsenic(III) can be determined directly in diluted urine byDpasv. For the quantitative determination of arsenic(III) in urine calibration curves were recorded and recovery experiments have been carried out. A detection limit of 20Μg As/l has been found and in the concentration range of 0.3–1.0 mg/l the coefficient of variation was better than 5%.

From the metallic interferences tested only bismuth at concentrations higher than 0.1 mg/l appeared to be able to influence the arsenic signal.

Keywords

Arsenic Differential Pulse Arsenic Trioxide Saturated Calomel Reference Electrode Electrolysis Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J. P., andR. M. Johnson (1969)Talanta 16, 1191–1207.CrossRefPubMedGoogle Scholar
  2. Belova, T. Ya., I. B. Berengard andB. Ya Kaplan (1975)Zavodsk. Lab. 41, 1314–1319.Google Scholar
  3. Davis, Ph. H., G. R. Dulude, R. M. Griffin, W. R. Matson andE. W. Zink (1978)Anal. Chem. 50, 137–143.CrossRefGoogle Scholar
  4. Forsberg, G., J. W. O'Laughlin andR. G. Megargle (1975)Anal. Chem. 47, 1586–1593.CrossRefGoogle Scholar
  5. Franke, J. P. andR. A. De Zeeuw (1976)Pharm. Weekblad 111, 725–734.Google Scholar
  6. Franke, J. P., R. A. De Zeeuw andR. Hakkert (1978)Anal. Chem. 50, 1374–1380.CrossRefGoogle Scholar
  7. Franke, J. P. (1978) Ph. D. thesis, Groningen, The Netherlands.Google Scholar
  8. Hamilton, T. W., J. Ellis andT. M. Florence (1980)Anal. Chim. Acta 119, 225–233.CrossRefGoogle Scholar
  9. Henry, F. T., T. O. Kirch andT. M. Thorpe (1979)Anal. Chem. 51, 215–218.CrossRefGoogle Scholar
  10. Kaplin, A. A., N. A. Veits, N. M. Mordvinova andG. G. Glukhov (1977)Zh. Analit. Khim. 32, 687–693.Google Scholar
  11. Meites, L. (1965)Polarographic techniques, ed. 11. Interscience Publishers Inc., New York, Appendix B.Google Scholar
  12. Myers, D. J., andJ. Osteryoung (1973)Anal. Chem. 45, 267–271.CrossRefGoogle Scholar
  13. Neiman, E. Ya., andG. B. Ponomarenko (1975)Zh. Analit. Khim. 30, 1132–1138.Google Scholar
  14. Peter, F., G. Growstock andG. Strunc (1979)Anal. Chim. Acta 104, 177–180.CrossRefGoogle Scholar
  15. Simon, R. K., G. D. Christian andW. C. Purdy (1968)Am. J. Clin. Pathol. 49, 207–215.CrossRefPubMedGoogle Scholar
  16. Sipos, L., P. Valenta, H. W. Nürnberg andM. Branica (1977)J. Electroanal. Chem. 77, 263–266.CrossRefGoogle Scholar
  17. Woidich, H., andW. Pfannhauser (1975)Z. Lebensm. Untersuch.-Forsch. 159, 323–327.CrossRefGoogle Scholar

Copyright information

© Bohn, Scheltema & Holkema 1981

Authors and Affiliations

  • J. P. Franke
    • 1
  • R. A. De Zeeuw
    • 1
  1. 1.Department of Toxicology, Laboratory for Pharmaceutical and Analytical ChemistryState University of GroningenAW GroningenThe Netherlands

Personalised recommendations