International Journal of Primatology

, Volume 11, Issue 3, pp 193–236 | Cite as

Fallacies of progression in theories of brain-size evolution

  • Terrence W. Deacon


The tacit assumption that relative enlargement and differentiation of brains reflect a progressive evolutionary trend toward greater intelligence is a major impediment to the study of brain evolution. Theories that purport to establish a linear scale for this presumed correlation between brain size and intelligence are undermined by the absence of an unbiased allometric baseline for estimating differences in encephalization, by the incompatibility of allometric analyses at different taxonomic levels, by the nonlinearity of the ‘criterion of subtraction” used to partition the somatic and cognitive components of encephalization, and by the failure to independently demonstrate any cognitive basis for the regularity of brain/body allometry. Analyzing deviations from brain/body allometric trends in terms of “encephalization” obfuscates the complementarity between brain and body size and ignores selection on body size, which probably determines most deviations. By failing to analyze the effects of allometry at many levels of structure, comparative anatomists have mistaken methodological artifacts for progressive evolutionary trends. Many structural changes, which are assumed to demonstrate progression of brain structure from primitive to advanced forms, are the results of allometric processes. Increased brain size turns out to have some previously unappreciated functional disadvantages.

Key Words

brain evolution allometry encephalization intelligence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbie, A. A. (1940). Cortical lamination in the monotremata.J. Comp. Neurol. 72: 428–467.Google Scholar
  2. Albrecht, G. H., and Gelvin, B. R. (1987). The simple allometry equation reconsidered: Assumptions, problems, and alternative solutions.Am. J. Phys. Anthrop. 72: 174.Google Scholar
  3. Armstrong, E. (1982). A look at relative brain size in mammals.Neurosci. Lett. 34: 101–104.Google Scholar
  4. Armstrong, E. (1983). Relative brain size and metabolism in mammals.Science 220: 1302–1304.Google Scholar
  5. Bauchot, R. (1978). Encephalization in vertebrates: A new mode of calculation for allometry coefficients and isoponderal indices.Brain Behav. Evol. 15: 1–18.Google Scholar
  6. Bauchot, R., and Stephan, H. (1966). Données nouvelles sur l'encéphalisation des insectivores et des prosimiens.Mammalia 30: 160–196.Google Scholar
  7. Bennett, P. M., and Harvey, P. H. (1985). Brain size, development and metabolism in birds and mammals.J. Zool. Lond. 207: 491–509.Google Scholar
  8. Blinkov, S. M., and Glezer, I. I. (1968).The Human Brain in Figures and Tables, Plenum Press, New York.Google Scholar
  9. Bok, S. T. (1959).Histonomy of the Cerebral Cortex, Van Nostrand-Reinhold, Princeton.Google Scholar
  10. Bok, S. T., and van Erp Taalman Kip, M. J. (1939). The size of the body and the size and number of nerves cells in the cerebral cortex.Acta Neerl. Morphol. 3: 1–22.Google Scholar
  11. Broca, P. (1861). Sur le volume et la forme du cerveau suivant les individus et suivant les races.Bulletin Société d'Anthropologie Paris 3: part 2, 13 pp.Google Scholar
  12. Broca, P. (1862). Sur les projections de les tête et sur un nouveau procédé de céphalométrie.Bulletin Société d'Anthropologie Paris 3: 32 pp.Google Scholar
  13. Broca, P. (1873). Sur la mensuration de la capacité du crâne.Memoire Société d'Anthropologie, 2nd series, 1: 92 pp.Google Scholar
  14. Brummelkamp, R. (1940). Brain weight and body size: A study of the cephalization problem.Verh. Kongr. nederl. Akad. Wetensch. 39: 1–57.Google Scholar
  15. Calder, W., III (1984),Size, Function and Life History, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  16. Campbell, A. (1905).Histological Studies on the Localization of Cerebral Functions, Cambridge University Press, Cambridge.Google Scholar
  17. Clutton-Brock, T. H., and Harvey, P. H. (1977). Primate ecology and social organization.J. Zool. Lond. 183: 1–39.Google Scholar
  18. Clutton-Brock, T. H., and Harvey, P. H. (1980). Primates, brains and ecology.J. Zool. Lond. 190: 309–324.Google Scholar
  19. Count, E. W. (1947). Brain and body weight in man: Their antecedents in growth and evolution.Ann. N.Y. Acad. Sci. 46: 993–1122.Google Scholar
  20. Dart, R. (1934). The dual structure of the neopallium: Its history and significance.J. Anat. 69: 3–19.Google Scholar
  21. Deacon, T. W. (1984). Connections of the inferior periarcuate area in the brain ofMacaca fascicularis: An experimental and comparative investigation of language circuitry and its evolution. Ph.D. thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  22. Deacon, T. W. (1988a). Human brain evolution: I. Evolution of language circuits. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.Google Scholar
  23. Deacon, T. W. (1988b) Human brain evolutions: II. Embryology and brain allometry. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Berlag, Berlin.Google Scholar
  24. Deacon, T. W. (1990a). Confusing size correlated differences with phylogenetic “progression” in brain evolution.Behav. Brain Sci. 13: 185–187. [Commentary for the target article by Glezer, I., Morgane, P., and Jacobs, M. (1988). Implications of the initial brain concept for brain evolution in cetacea.Behav. Brain Sci. 11: 75–116.]Google Scholar
  25. Deacon, T. W. (1990b). Problems of ontogeny and phylogeny in brain size evolution.Int. J. Primatol. (this vol.)Google Scholar
  26. Deacon, T. W., Sokoloff, A., and Wecht, D. (1987). Circular organization of connections linking midbrain areas, sections of the mediodorsal thalamus, and prefrontal areas in the rat.Soc. Neurosci. Abstracts 13:304–9.Google Scholar
  27. Diamond, I. T. (1979). The subdivisions of the neocortex: A proposal to revise the traditional view of sensory, motor and association areas. In Sprague, J., and Epstein, A. (es.),Progress in Psychobiology and Physiological Psychology, Vol. 8, Academic Press, New York.Google Scholar
  28. Diamond, I. T. (1982). The functional significance of architectonic divisions of the cortex, Lashley's criticism of the traditional view. In Orbach, J. (ed.),Neuropsychology after Lashley, Lawrence Erlbaum Associates, New Jersey.Google Scholar
  29. Dubois, E. (1997) Über die Abhangigkeit des Hirngewichtes von der Korpergrosse bei den Säugetieren.Arch. Anthrop. 25: 1–28.Google Scholar
  30. Dubois, E. (1898). Über die Abhangigkeit des Hirngewichtes von der Korpergrosse beim Menschen.Arch. Anthrop. 25: 423–441.Google Scholar
  31. Dubois, E. (1913). On the relation between the quantity of brain and the size of the body in vertebrates.Verh. Kongr. Akad. Wetensch. 16: 647.Google Scholar
  32. Dubois, E. (1923). Phylogenetic and ontogenetic increase of the volume of the brain in the vertebrata.Verh. Kongr. Akad. Wetensch. 25: 235–255.Google Scholar
  33. Ebbesson, S. O. (1980). The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity.Cell Tissue Res. 213: 179–212.Google Scholar
  34. Economo, C. (1926). Koeffizient für Organizationshohe der Grosshirnrinde.Klin. Wochschr. 5: 525.Google Scholar
  35. Eisenberg, J. F. (1981).The Mammalian Radiations: A Study in Evolution and Adaptation, University of Chicago Press, Chicago.Google Scholar
  36. Eisenberg, J. F., and Wilson, D. E. (1978). Relative brain size and feeding strategies in the Chiroptera.Evolution 32: 740–751.Google Scholar
  37. Elliot-Smith, G. (1910). Some problems related to the evolution of the brain.Lancet 1: 1–6, 147–153, 221–227.Google Scholar
  38. Fleagle, J. G. (1985). Size and adaptation in primates. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 1–20.Google Scholar
  39. Flechsig, P. (1900). Über Projections und Associations Zentren des menschlichen Gehirns. [On projection and association centers of the human brain.]Neurologie Zentralblatt 19.Google Scholar
  40. Flechsig, P. (1901). Developmental (myelogenetic) localization of the cerebral cortex in the human subject.Lancet 2: 1027–1029.Google Scholar
  41. Fox, J. H., and Wilczynski, W. (1986). Allometry of major CNS divisions: Towards a reevaluation of somatic brain-body scaling.Brain Behav. Evol. 28: 157–169.Google Scholar
  42. Friede, R. L. (1953). Gliaindex und Hirnstoffwechsel.Wien. Z. Nervenheilk, 7: 143–151.Google Scholar
  43. Galaburda, A. M. and Pandya, D. N. (1983). The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey.J. Comp. Neurol. 221: 169–184.Google Scholar
  44. Galaburda, A. and Sanides, F. (1980). Cytoarchitectonic organization of the human auditory cortex.J. Comp. Neurol. 190: 597–610.Google Scholar
  45. Gelvin, B. R., and Albrecht, G. H. (1987). Brain weight/body weight scaling in primates: Assumptions, problems, and alternative solutions.Am. J. Phys. Anthrop. 72: 202.Google Scholar
  46. Glezer, I., Morgane, P., and Jacobs, M. (1988). Implications of the initial brain concept for brain evolution in cetacea.Behav. Brain Sci. 11: 75–116.Google Scholar
  47. Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny.Biol. Rev. 41: 587.Google Scholar
  48. Gould, S. J. (1975). Allometry in primates with emphasis of scaling and the evolution of the brain.Contr. Primatol. 5: 244–292.Google Scholar
  49. Gould, S. J. (1977).Ontogeny and Phylogeny, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  50. Gould, S. J. (1981).The Mismeasure of Man, George J. McLeod, Ltd., Toronto.Google Scholar
  51. Hafner, M. S., and Hafner, J. C. (1984). Brain size, adaptation and heterochrony in geomyoid rodents.Evolution 38: 1088–1098.Google Scholar
  52. Harvey (1988). Allometric analysis and brain size. In Jerison, H. and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.Google Scholar
  53. Haug, H. (1987). Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant).Am. J. Anat. 180: 126–142.Google Scholar
  54. Hladik, C. M. (1967). Surface relative du tractus digestif de quelques primates: Morphologie de villosités intestinales et correlations avec la régime alimentaire.Mammalia 31: 120–147.Google Scholar
  55. Hodos, W. (1987). Comparative neuroanatomy and the evolution of intelligence. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.Google Scholar
  56. Hofman, M. A. (1982a). A two-component theory of encephalization in mammals.J. Theor. Biol. 99: 571–584.Google Scholar
  57. Hofman, M. A. (1982b). Encephalization in mammals in relation to the size of the cerebral cortex.Brain Behav. Evol. 20: 84–96.Google Scholar
  58. Hofman, M. A. (1983). Evolution of brain size in neonatal and adult placental mammals: A theoretical approach.J. Theor. Biol. 105: 317–332.Google Scholar
  59. Hofman, M. A. (1985). Size and shape of the cerebral cortex in mammals: I. The cortical surface.Brain Behav. Evol. 27: 28–40.Google Scholar
  60. Holloway, R. L. (1966). Cranial capacity, neural reorganization and hominid evolution: A search for more suitable parameters.Am. Anthrop. 68: 103–121.Google Scholar
  61. Holloway, R. L. (1968). The evolution of the primate brain: Some aspects of quantitative relationships.Brain Res. 7: 121–172.Google Scholar
  62. Holloway, R. L. (1969). Some questions on parameters of neural evolution in primates.Ann. N. Y. Acad. Sci. 167: 332–340.Google Scholar
  63. Holloway, R. L. (1979). Brain size, allometry, and reorganization: Toward a synthesis. In Hahn, M., Jensen, C., and Dudek, B. (eds.),Development and Evolution of Brain Size, Academic Press, New York.Google Scholar
  64. Holloway, R. L. (1980). Within-species brain-body weight variability: A reexamination of the Danish data and other primate species.Am. J. Phys. Anthrop. 53: 109–121.Google Scholar
  65. Holloway, R. L., and Post, D. G. (1982). The relativity of relative brain measures and hominid mosaic evolution. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.Google Scholar
  66. Holloway, R. L. (1983). Human brain evolution: A search for units, models and synthesis.Canad. J. Anthrop. 3: 215–232.Google Scholar
  67. Huxley, J. (1932).Problems of Relative Growth, Methuen, London.Google Scholar
  68. Jacobson, M. (1978).Developmental Neurobiology, Plenum Pless, New York.Google Scholar
  69. Jerison, H. J. (1955). Brain to body ratios and the evolution of intelligence.Science 121: 447–449.Google Scholar
  70. Jerison, H. J. (1973).Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  71. Jerison, H. J. (1977). The theory of encephalization.Ann. N.Y. Acad. Sci. 299: 146–160.Google Scholar
  72. Jerison, H. J. (1982). Allometry, brain size, cortical surface, and convolutedness. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.Google Scholar
  73. Jerison, H. J. (1988). The evolutionary biology of intelligence: Afterthoughts. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.Google Scholar
  74. Kay, R. F. (1984). On the use of anatomical features to infer foraging behavior in extinct primates. In Cant, J., and Rodman, P. (eds.),Adaptations for Foraging in Nonhuman Primates, Columbia University Press, New York, pp. 21–53.Google Scholar
  75. Kaas, J. H. (1987). The organization and evolution of neocortex. In Wise, S. P. (ed.),Higher Brain Functions: Recent Explorations of the Brain's Emergent Properties, John Wiley & Sons, New York.Google Scholar
  76. Kaas, J. H. (1989). Why does the brain have so many visual areas?J. Cog. Neurosci. 1: 121–135.Google Scholar
  77. Kleiber, M. (1947). Body size and metabolic rate.Physiol. Rev. 27: 511–541.Google Scholar
  78. Kleiber, M. (1961).The Fire of Life: An Introduction to Animal Energetics, John Wiley, New York.Google Scholar
  79. Kruska, D. (1988). Mammalian domestication and its effect on brain structure and behavior. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.Google Scholar
  80. Lande, R. (1985). Genetic and evolutionary aspects of allometry. In Jungers, W. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York.Google Scholar
  81. Lapicque, L. (1907). Tableau generale des poids somatique et encephalique dans les especes animales.Bull. Mem. Soc. Anthrop. Paris 8: 248–262.Google Scholar
  82. Lapicque, L. (1908). Le poids encephalique en fonction du poids corporel entre individus d'une meme espece.Bull. Mem. Soc. Anthrop. Paris 9: 249–271.Google Scholar
  83. Lashley, K. (1929).Brain Mechanisms and Intelligence. University of Chicago Press, Chicago.Google Scholar
  84. Lashley, K. (1931). Mass action in cerebral function.Science, 73: 245–254.Google Scholar
  85. Mace, G. M., Harvey, P. H., and Clutton-Brock, T. H. (1981). Brain size and ecology in small mammals.J. Zool. Lond. 193: 333–354.Google Scholar
  86. MacPhail, E. (1982).Brain and Intelligence in Vertebrates, Clarendon Press, Oxford.Google Scholar
  87. Manouvrier, L. (1885). Sur l'interprétation de la quantité dans l'encéphale et dans le cerveau en particulier.Bull. Soc. Anthrop. Paris (Ser. 2) 3: 137–323.Google Scholar
  88. Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates.Nature, Lond. 293: 57–60.Google Scholar
  89. Martin, R. D. (1982). Allometric approaches to the evolution of the primate nervous system. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution: Methods and Concepts, Plenum Press, New York.Google Scholar
  90. Martin, R. D. (1983). Human brain evolution in an ecological context: Fifty-second James Arthur Lecture on the Evolution of the Human Brain. American Museum of Natural History, New York.Google Scholar
  91. Martin, R. D. and Harvey, P. (1985). Brain size allometry: Ontogeny and phylogeny. In Jungers, W. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York.Google Scholar
  92. McNab, B. K. (1980). Food habits, energetics and population biology of mammals.Am. Nat. 116: 106–124.Google Scholar
  93. Meyer, J. (1981). A quantitative comparison of the parts of the brains of two Australian marsupials and some eutherian mammals.Brain Behav. Evol. 18: 60–71.Google Scholar
  94. Pandya, D., and Seltzer, B. (1982). Association areas of the cerebral cortex.Trends Neurosci. 5: 386–390.Google Scholar
  95. Pandya, D., and Yeterian, E. (1985). Architecture and connections of cortical association areas. In Peters, A., and Jones, E. G. (eds.),Cerebral Cortex, Vol. 4, Association and Auditory Cortices, Plenum Press, New York.Google Scholar
  96. Pandya, D. N., and Sanides, F. (1973). Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern.Z. Anat. Etwickl.-Gesch. 139: 127–161.Google Scholar
  97. Passingham, R. E. (1975). Changes in the size and organization of the brain in man and his ancestors.Brain Behav. Evol. 11: 73–90.Google Scholar
  98. Pirlot, P., and Stephan, H. (1970). Encephalization in Chiroptera.Can. J. Zool. 48: 433–442.Google Scholar
  99. Platel, R. (1979). Brain weight and body weight relationships. In Gans, C., Northcutt, R. G., and Ulinski, P. (eds.),Biology of Reptilia, Academic Press, New York.Google Scholar
  100. Purves, D., and Lichtman, J. W. (1985). Geometric differences among homologous neurons in mammals.Science 228: 298–302.Google Scholar
  101. Rensch, B. (1956). Increase in learning ability with increase of brain size.Am. Nat. 90: 81–95.Google Scholar
  102. Ridet, J. M., Bauchot, R., Diagne, M., and Platel, R. (1976). Croissances ontogenetique et phylogenetique de l'encéphale des Teleosteens.Rev. Trav. Inst. Peches Maritimes 40: 727–728.Google Scholar
  103. Rockel, A. J., Hiorns, R. W., and Powell, T. P. S. (1980). The basic uniformity in the structure of the neocortex.Brain 103: 221–244.Google Scholar
  104. Sacher, G. A. (1970). Allometric and factorial analysis of brain structure in insectivores and primates. In Noback, C., and Montagna, W. (eds.),The Primate Brain: Advances in Primatology, Appleton-Century-Crofts, New York.Google Scholar
  105. Sacher, G. A. (1982). Brain maturation in the evolution of primates. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution: Methods and Concepts, Plenum Press, New York.Google Scholar
  106. Sanides, F. (1969). Comparative architectonics of the neocortex of mammals and their evolutionary interpretation.Ann. N.Y. Acad. Sci. 167: 404–423.Google Scholar
  107. Sanides, F. (1970). Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In Noback, C., and Montagna, W. (eds.),The Primate Brain: Advances in Primatology, Appleton-Century-Crofts, New York.Google Scholar
  108. Sanides, F. (1978). Comparative neurology of the temporal lobe in primates including man with reference to speech.Brain and Lang. 2: 396–419.Google Scholar
  109. Smith, R. J. (1984). Determination of relative size: The “criterion of subtraction” problem in allometry.J. Theor. Biol. 108: 131–142.Google Scholar
  110. Snell, O. (1891). Das Gewicht des Gehirns und des Hirnmantels der Saugetiere in Beziehung zu deren geistigen Fahigkeiten.Sitz. Ges. Morph. Physiol. Muchen 7: 90–94.Google Scholar
  111. Snell, O. (1892). Die Abhangigkeit des Hirngewichtes von dem Korpergewicht und den geistigen Fahigheiten.Archiv für psychiatrie 23: 436–446.Google Scholar
  112. Stephan, H. (1960). Methodische Studien uber den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns.Z. Wiss. Zool. 164: 143–172.Google Scholar
  113. Stephan, H. (1967). Zur Enwicklungshohe Der Insektivoran nach Merkmalen des Gehirns und die Definition der “Basalen Insektivoren.”Zool. Anz. 179: 177–199.Google Scholar
  114. Stephan, H. (1972). Evolution of primate brains: A comparative anatomical investigation. In Tuttle, R. (ed.),The Functional and Evolutionary Biology of Primates, Aldine-Atherton, Chicago.Google Scholar
  115. Stephan, H., Frahm, H., and Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates.Folia Primatol. 35: 1–29.Google Scholar
  116. Tower, D. B. (1954). Structural and functional organization of mammalian cerebral cortex: The correlation of neuron density with brain size—Cortical density in the finwhale with a note on the cortical neurone density in the Indian elephant.J. Comp. Neurol. 101: 19–53.Google Scholar
  117. Van Valen, L. (1974). Brain size and intelligence in man.Am. J. Phys. Anthrop. 40: 417–424.Google Scholar
  118. von Bonin, G. (1937). Brain-weigh and body-weight in mammals.J. Gen. Psychol. 16: 379–389.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Terrence W. Deacon
    • 1
  1. 1.Department of AnthoropologyHarvard UniversityCambridge

Personalised recommendations