Advertisement

Journal of Biomolecular NMR

, Volume 1, Issue 4, pp 403–420 | Cite as

Determination of heteronuclear long-range couplings to heteronuclei in natural abundance by two- and three-dimensional NMR spectroscopy

  • Peter Schmieder
  • Michael Kurz
  • Horst Kessler
Research Papers

Summary

A method to determine heteronuclear long-range couplings to carbon and nitrogen at natural abundance is presented and applied to two cyclic hexapeptides and the peptidomacrolide FK506. The method is applicable for proton-bearing heteronuclei. By introduction of heteronuclear half-filters in two- or three-dimensional experiments the spectra exhibit an E.COSY pattern when executed without heteronuclear decoupling. The extraction of the heteronuclear coupling constants is therefore independent of linewidth.

Incyclo(-Ala-Ala-Ala-Pro-Ala-Pro-) a13C-ωI-half-filtered TOCSY spectrum yields the3J(HN-Cβ) coupling constant, which can be used to remove ambiguity in the ϖ angle determination from3J(HN-Hα). Incyclo(-d-Pro-Phe-Phe-Lys(Z)-Trp-Phe-) a15N-ωI-half-filtered TOCSY was applied to individually assign the diastereotopic β-methylene protons via the3J(H-N). In FK506 a 3D-HMQC-TOCSY without heteronuclear decoupling is used to obtain a number of heteronuclear coupling constants to carbons. These values have been applied for the assignment of diastereotopic methylene protons and determination of dihedral angles in the cyclic portion of the molecule.

Keywords

Two-dimensional NMR Three-dimensional NMR Peptides FK506 Heteronuclear long-range couplings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, U. (1989) Doctoral thesis, University of Frankfurt/Main.Google Scholar
  2. Bax, A. (1983)J. Magn. Reson.,52, 330–334.Google Scholar
  3. Bax, A. and Davis, D.G. (1985)J. Magn. Reson.,65, 355–360.Google Scholar
  4. Bax, A. and Freeman, R. (1982)J. Am. Chem. Soc.,104, 1099–1100.Google Scholar
  5. Bax, A. and Subramanian, S. (1986)J. Magn. Reson.,67, 565–569.Google Scholar
  6. Bax, A. and Summers, M.F. (1986)J. Am. Chem. Soc.,108, 2093–2094.Google Scholar
  7. Bax, A., Griffey, R.H. and Hawkins, B.L. (1983a)J. Magn. Reson.,55, 301–315.Google Scholar
  8. Bendall, M.R., Pegg, D.T. and Doddrell, D.M. (1983)J. Magn. Reson.,52, 81–117.Google Scholar
  9. Bermel, W., Wagner, K. and Griesinger, C. (1989)J. Magn. Reson.,83, 223–232.Google Scholar
  10. Braunschweiler, L. and Ernst, R.R. (1983)J. Magn. Reson.,53, 521–528.Google Scholar
  11. Bystrov, V.F. (1976)Prog. NMR Spectrosc.,10, 41–81.Google Scholar
  12. Bystrov, V.F., Gavrilov, Y.D., Ivanov, V.T. and Ovchinnikov, Y.A. (1977)Eur. J. Biochem.,78, 63–82.Google Scholar
  13. Cavanagh, J. and Keeler, J. (1988)J. Magn. Reson.,77, 356–362.Google Scholar
  14. Cowburn, D., Live, D.H., Fischerman, A.J. and Agosta, W.C. (1983)J. Am. Chem. Soc.,105, 7435–7442.Google Scholar
  15. Crouch, R.C. and Martin, G.E. (1991)J. Magn. Reson.,92, 189–194.Google Scholar
  16. Davis, D.G., Agosta, W.C. and Cowburn, D. (1983)J. Am. Chem. Soc.,105, 7435–7442.Google Scholar
  17. DeMarco, A., Llinas, M. and Wüthrich, K. (1978)Biopolymers,17, 2727–2742.Google Scholar
  18. De Waard, P., Boelens, R., Vuister, G.W. and Vliegenthart, J.F.G. (1990)J. Am. Chem. Soc.,112, 3232–3234.Google Scholar
  19. Edison, A.S., Westler, W.M. and Markley, J.L. (1991)J. Magn. Reson.,92, 434–438.Google Scholar
  20. Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987)Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford.Google Scholar
  21. Fesik, S.W. and Zuiderweg, E.R.P. (1990)Quart. Rev. Biophys.,23, 97–131.Google Scholar
  22. Fesik, S.W., Gampe, R.T. and Zuiderweg, E.R.P. (1989)J. Am. Chem. Soc.,111, 770–772.Google Scholar
  23. Fischman, A.J., Live, D.H., Wyssbrod, H.R., Agosta, W.C. and Cowburn, D. (1980)J. Am. Chem. Soc.,102, 2533–2539.Google Scholar
  24. Garbow, J.R., Weitkamp, D.P. and Pines, A. (1982)Chem. Phys. Lett.,93, 504–509.Google Scholar
  25. Gavrilov, Y.D., Solkan, V.N. and Bystrov, V.F. (1976)lzv. Akad. Nauk SSSR, Ser. Khim., 2368–2373.Google Scholar
  26. Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1985)J. Am. Chem. Soc.,107, 6394–6396.Google Scholar
  27. Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1986)J. Chem. Phys.,85, 6837–6852.Google Scholar
  28. Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1987)J. Magn. Reson.,75, 474–492.Google Scholar
  29. Güntert, P., Braun, W., Billeter, M. and Wüthrich, K. (1989)J. Am. Chem. Soc.,111, 3997–4004.Google Scholar
  30. Jippo, T., Kamo, P. and Nagayama, K. (1986)J. Magn. Reson.,66, 344–348.Google Scholar
  31. Kaptein, R., Boelens, R., Scheek, R.M. and van Gunsteren, W.F. (1988)Biochemistry,27, 5389–5395.Google Scholar
  32. Karplus, M.J. (1959)J. Chem. Phys.,30, 11–15.Google Scholar
  33. Karplus, M.J. (1963)J. Am. Chem. Soc.,85, 2870–2871.Google Scholar
  34. Karuso, P., Kessler, H. and Mierke, D.F. (1990)J. Am. Chem. Soc.,112, 9434–9436.Google Scholar
  35. Kay, L.E., Clore, G.M., Bax, A. and Gronenborn, A.M. (1990)Science,2491, 411–414.Google Scholar
  36. Keeler, J., Neuhaus, D. and Titman, J.J. (1988)Chem. Phys. Lett.,146, 545–548.Google Scholar
  37. Kessler, H. and Eiermann, V. (1982)Tetrahedron Lett.,23, 4689–4692.Google Scholar
  38. Kessler, H., Bernd, M. and Damm, I. (1982)Tetrahedron Lett.,23, 4685–4688.Google Scholar
  39. Kessler, H., Loosli, H.R. and Oschkinat, H. (1984)Peptides (Ed, Ragnarsson, U.) Almquist and Wiksell International, Stockholm, pp. 65–79.Google Scholar
  40. Kessler, H., Müller, A. and Oschkinat, H. (1985)Magn. Reson. Chem.,23, 844–852.Google Scholar
  41. Kessler, H., Griesinger, C. and Wagner, K. (1987)J. Am. Chem. Soc.,109, 6927–6933.Google Scholar
  42. Kessler, H., Gehrke, M. and Griesinger, C. (1988a)Angew. Chem., Int. Ed. Engl.,27, 490–536.Google Scholar
  43. Kessler, H., Anders, U. and Gemmeker, G. (1988b)J. Magn. Reson.,78, 382–388.Google Scholar
  44. Kessler, H., Haupt, A. and Will, M. (1989) InComputer-Aided Drug Design (Eds, Perum, T.J. and Propst, C.L.) Marcel Dekker, New York, pp. 461–484.Google Scholar
  45. Kessler, H., Schmieder, P., Köck, M. and Kurz, M. (1990a)J. Magn. Reson.,88, 615–618.Google Scholar
  46. Kessler, H., Schmieder, P. and Oschkinat, H. (1990b)J. Am. Chem. Soc.,112, 8599–8600.Google Scholar
  47. Kim, Y. and Prestegard, J.H. (1990)Proteins,8, 377–385.Google Scholar
  48. Kino, T., Hatanaka, H., Hashimoto, M., Nishiyama, M., Goto, T., Okuhara, M., Kohsaka, M., Aoki, H. and Imanaka, H. (1987a)J. Antibiot.,40, 1249–1255.Google Scholar
  49. Kino, T., Hatanaka, H., Miyata, S., Inamura, N., Nishiyama, M., Yajima, T., Goto, T., Okuhara, M., Kohsaka, M., Aoki, H. and Ochiai, T. (1987b)J. Antibiot.,40, 1256–1265.Google Scholar
  50. Klausner, Y.S. and Bodanszky, M. (1974)Synthesis, 549–559.Google Scholar
  51. Krishnamurthy, V.V. and Casida, J.E. (1989)J. Magn. Reson.,85, 69–78.Google Scholar
  52. Kurz, M., Schmieder, P. and Kessler, H. (1991)Angew. Chem., Int. Ed. Engl., in press.Google Scholar
  53. Lichter, R.L. and Roberts, J.D. (1970)J. Org. Chem.,35, 2806–2807.Google Scholar
  54. Marion, D. and Wüthrich, K. (1983)Biochem. Biophys. Res. Commun.,113, 967–974.Google Scholar
  55. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989)J. Magn. Reson.,85, 393–399.Google Scholar
  56. Mierke, D.F., Karuso, P., Schmieder, P. and Kessler, H. (1991)Helv. Chim. Acta,74, 1027–1047.Google Scholar
  57. Montelione, G.T. and Wagner, G. (1989)J. Am. Chem. Soc.,111, 5474–5475.Google Scholar
  58. Montelione, G.T. and Wagner, G. (1990)J. Magn. Reson.,87, 183–188.Google Scholar
  59. Montelione, G.T., Winkler, M.E., Rauenbuehler, P. and Wagner, G. (1989)J. Magn. Reson.,82, 198–204.Google Scholar
  60. Müller, L. (1979)J. Am. Chem. Soc.,101, 4481–4484.Google Scholar
  61. Neuhaus, D. and Williamson, M. (1989)The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH, Weinheim.Google Scholar
  62. Neuhaus, D., Wagner, G., Vasák, M., Kägi, H.R. and Wüthrich, K. (1984)Eur. J. Biochem.,143, 659–667.Google Scholar
  63. Nilges, M., Clore, G.M. and Gronenborn, A.M. (1990)Biopolymers,29, 813–822.Google Scholar
  64. Ochs, M. and Berger, S. (1990)Magn. Reson. Chem.,28, 994–997.Google Scholar
  65. Otting, G., Senn, H., Wagner, G. and Wüthrich, K. (1986)J. Magn. Reson.,70, 500–505.Google Scholar
  66. Pachler, K.G.R. (1963)Spectrochim. Acta,19, 2085–2092.Google Scholar
  67. Pachler, K.G.R. (1964)Spectrochim. Acta,20, 581–587.Google Scholar
  68. Pratum, T.K., Hammen, P.K. and Andersen, N.H. (1988)J. Magn. Reson.,78, 376–381.Google Scholar
  69. Rance, M. (1987)J. Magn. Reson.,74, 557–564.Google Scholar
  70. Schmieder, P., Kessler, H. and Oschkinat, H. (1990)Angew. Chem., Int. Ed. Engl.,29, 546–548.Google Scholar
  71. Schmieder, P., Zimmer, S. and Kessler, H. (1991a)Magn. Reson. Chem.,29, 375–380.Google Scholar
  72. Schmieder, P., Thanabal, V., McIntosh, L.P., Dahlquist, F.W. and Wagner, G. (1991b)J. Am. Chem. Soc., in press.Google Scholar
  73. Schreiber, S. (1991)Science,251, 283–287.Google Scholar
  74. Schudok, M. (1989) Doctoral thesis, University of Frankfurt/Main.Google Scholar
  75. Shaka, A.J., Lee, C.J. and Pines, A. (1988)J. Magn. Reson.,77, 274–293.Google Scholar
  76. Sogn, J.A., Gibbons, W.A. and Randall, E.W. (1973)Biochemistry,12, 2000–2104.Google Scholar
  77. Stimson, E.R., Meinwald, Y.C., Montelione, G.T. and Scheraga, H.A. (1986)Int. J. Pept. Prot. Res.,27, 569–582.Google Scholar
  78. Tanaka, H., Kuroda, A., Marusawa, H., Hatanaka, H., Kino, T., Goto, T., Hashimoto, M. and Taga, T. (1987)J. Am. Chem. Soc.,109, 5031–5033.Google Scholar
  79. Titman, J.J. and Keeler, J. (1990)J. Magn. Reson.,89, 640–646.Google Scholar
  80. Titman, J.J., Neuhaus, D. and Keeler, J. (1989)J. Magn. Reson.,85, 111–131.Google Scholar
  81. Uhrin, D. and Liptaj, T. (1989)J. Magn. Reson.,81, 82–91.Google Scholar
  82. Uhrin, D., Liptaj, T., Hricorini, M. and Capek, P. (1989)J. Magn. Reson.,85, 137–140.Google Scholar
  83. Wagner, G., Braun, W., Havel, T.F., Schaumann, T., Go, N. and Wüthrich, K. (1987)J. Mol. Biol.,196, 611–639.Google Scholar
  84. Wagner, G., Schmieder, P. and Thanabal, V. (1991)J. Magn. Reson.,93, 436–440.Google Scholar
  85. Waterhouse, A.L. (1989)Magn. Reson. Chem.,27, 37–43.Google Scholar
  86. Weber, P.L., Hare, D. and Morrison, R. (1984)J. Mol. Biol.,204, 483–487.Google Scholar
  87. Wider, G., Neri, D., Otting, G. and Wüthrich, K. (1989)J. Magn. Reson.,85, 426–431.Google Scholar
  88. Wimperis, S. and Freeman, R. (1984)J. Magn. Reson.,58, 348–353.Google Scholar
  89. Wüthrich, K. (1986)NMR of Proteins and Nucleic Acids, Wiley, New York.Google Scholar
  90. Wüthrich, K., Billeter, M. and Braun, W. (1983)J. Mol. Biol.,169, 949–961.Google Scholar
  91. Zuiderweg, E.R.P., Boelens, R. and Kaptein, R. (1985)Biopolymers,24, 601–611.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1991

Authors and Affiliations

  • Peter Schmieder
    • 1
  • Michael Kurz
    • 1
  • Horst Kessler
    • 1
  1. 1.Organisch Chemisches Institut der TU MünchenGarchingGermany

Personalised recommendations