Advertisement

Journal of Biomolecular NMR

, Volume 1, Issue 4, pp 323–347 | Cite as

Solution structure of actinomycin-DNA complexes: Drug intercalation at isolated G-C sites

  • Xiucai Liu
  • Huifen Chen
  • Dinshaw J. Patel
Research Papers

Summary

The actinomycin-D-d(A1-A2-A3-G4-C5-T6-T7-T8) complex (1 drug per duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. We have assigned the exchangeable and nonexchangeable proton resonances of Act and d(A3GCT3) in the complex and identified the intermolecular proton-proton NOES that define the alignment of the antitumor agent at its binding site on duplex DNA. The molecular dynamics calculations were guided by 70 intermolecular distance constraints between Act and nucleic acid protons in the complex. The phenoxazone chromophore of Act intercalates at the (G-C)I·(G-C)II step in the d(A3GCT3) duplex with the phenoxazone ring stacking selectively with the G4I and G4II purine bases but not with C4I and C4II pyrimidine bases at the intercalation site. There is a pronounced unwinding between the A3·T6 and G4·C5 base pairs which are the next steps located in either direction from the intercalation site in the Act-d(A3GCT3) complex. The Act cyclic pentapeptide ring conformations in the complex are similar to those for free Act in the crystal except for a change in orientation of the ester linkage connecting meVal and Thr residues. The cyclic pentapeptide rings are positioned in the minor groove with the established G-C sequence specificity of binding associated with intermolecular hydrogen bonds between the Thr backbone CO and NH groups to the NH2-2 and N3 positions of guanosine, respectively. Complex formation is also stabilized by van der Waals interactions between nonpolar groups on the cyclic pentapeptide rings and the sugar residues and base pair edges lining the widened minor groove of the (A3-G4-C5-T6)I·(A3-G4-C5-T6)II binding site segment of the DNA helix.

Keywords

Drug-DNA interaction Actinomycin Restrained molecular dynamics Nuclear Overhauser effect NOE 2D NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, S.C., Shafer, R.H. and Mirau, P.A. (1982)J. Am. Chem. Soc.,104, 5504–5506.Google Scholar
  2. Brown, S.C., Mullis, K., Levenson, C. and Shafer, R.H. (1984)Biochemistry,23, 403–408.Google Scholar
  3. Cerami, A., Reich, E., Ward, D.C. and Goldberg, I.H. (1967)Proc. Natl. Acad. Sci. U.S.A.,57, 1036–1042.Google Scholar
  4. Creighton, S., Rudolph, B., Lybrand, T., Singh, U.C., Shafer, R., Brown, S., Kollman, P., Case, D.A. and Andrea, T. (1989)J. Biomol. Struct. Dyn.,6, 929–969.Google Scholar
  5. Delepierre, M., van Heijenoort, C., Igolen, J., Pothier, J., LeBret, M. and Roques, B.P. (1989)J. Biomol. Struct. Dyn.,7, 557–589.Google Scholar
  6. Dickerson, R.E. and Drew, H.R. (1981)J. Mol. Biol.,149,761–786.Google Scholar
  7. Fox, K.R. and Waring, M.J. (1984)Nucl. Acids Res.,12, 9271–9285.Google Scholar
  8. Gao, X. and Patel, D.J. (1988)Biochemistry,27, 1744–1751.Google Scholar
  9. Gao, X. and Patel, D.J. (1989)Biochemistry,28, 751–762.Google Scholar
  10. Gao, X., Mirau, P. and Patel, D.J. (1991)J. Mal. Biol., in press.Google Scholar
  11. Ginell, S., Lessinger, L. and Berman, H.M. (1988)Biopolymers,27, 843–864.Google Scholar
  12. Jain, S.C. and Sobell, H.M. (1972)J. Mol. Biol.,68, 1–20.Google Scholar
  13. Jones, R.L., Scott, E.V., Zon, G., Marzilli, L.G. and Wilson, W.D. (1988)Biochemistry,27, 6021–6026.Google Scholar
  14. Krugh, T.R. (1972)Proc. Natl. Acad. Sci. U.S.A.,69, 1911–1914.Google Scholar
  15. Krugh, T.R. and Chen, Y.C. (1975)Biochemistry,14, 4912–4922.Google Scholar
  16. Krugh, T.R. and Neely, J.W. (1973)Biochemistry,12, 4418–4425.Google Scholar
  17. Metzler, W.J., Wang, C., Kitchen, D., Levy, R.M. and Pardi, A. (1990)J. Mal. Biol.,214, 711–736.Google Scholar
  18. Muller, W. and Crothers, D.M. (1968)J. Mol. Biol.,35, 251–290.Google Scholar
  19. Patel, D.J. (1974a)Biochemistry,13, 2388–2396.Google Scholar
  20. Patel, D.J. (1974b)Biochemistry,13, 2396–2402.Google Scholar
  21. Patel, D.J. (1976a)Biochem. Biophys. Acta,442, 98–108.Google Scholar
  22. Patel, D.J. (1976b)Biopolymers,15, 533–558.Google Scholar
  23. Patel, D.J. and Canuel, L.L. (1977)Proc. Natl. Acad. Sci. U.S.A.,74, 2624–2628.Google Scholar
  24. Patel, D.J., Kozlowski, S.A., Rice, J.A., Broka, C. and Itakura, K. (1981)Proc. Natl. Acad. Sci. U.S.A.,78, 7281–7284.Google Scholar
  25. Petersheim, M., Mehdi, S. and Gerlt, J.A. (1984)J. Am. Chem. Soc.,106, 439–440.Google Scholar
  26. Reich, E. and Goldberg, I.H. (1964)Progress in Nucleic Acids Research and Molecular Biology 3, 183–234.Google Scholar
  27. Reid, D.G., Salisbury, S.A. and Williams, D.H. (1983)Biochemistry,22, 1377–1385.Google Scholar
  28. Scott, E.V., Jones, R.L., Banville, D.L., Zon, G., Marzilli, L.G. and Wilson, W.D. (1988a)Biochemistry,27, 915–923.Google Scholar
  29. Scott, E.V., Zon, G., Marzilli, L.G. and Wilson, W.D. (1988b)Biochemistry,27, 7940–7951.Google Scholar
  30. Sobell, H.M. (1973)Progress in Nucleic Acids Research and Molecular Biology,13, 153–190.Google Scholar
  31. Sobell, H.M. and Jain, S.C. (1972)J. Mol. Biol.,68, 21–34.Google Scholar
  32. Sobell, H.M., Jain, S.C. and Sakore, T.D. (1971)Nature New Biology,231, 200–205.Google Scholar
  33. Takusagawa, F., Dabrow, M., Neidle, S. and Berman, H.M. (1982)Nature,296, 466–469.Google Scholar
  34. Van de Ven, F.J. and Hilbers, C.W. (1988)Eur. J. Biochem.,178, 1–38.Google Scholar
  35. Van Dyke, M.W., Hertzberg, R.P. and Dervan, P.B. (1982)Proc. Natl. Acad. Sci. U.S.A.,79, 5470–5474.Google Scholar
  36. Wang, A.H., Ughetto, G., Quigley, G. and Rich, A. (1987)Biochemistry,26, 1152–1163.Google Scholar
  37. Waring, M. (1970)J. Mal. Biol.,54, 247–279.Google Scholar
  38. Waring, M. (1981) InThe Molecular Basis of Antibiotic Action (Eds, Gale, F. et al.) Wiley, London, pp. 314–333.Google Scholar
  39. Wells, R.D. and Larson, J.E. (1970)J. Mol. Biol.,49, 319–342.Google Scholar
  40. Wilson, W.D., Jones, R.L., Zon, G., Scott, E.V., Banville, D.M. and Marzilli, L.G. (1986)J. Am. Chem. Soc.,108, 7113–7114.Google Scholar
  41. Wüthrich, K. (1986)NMR of Proteins and Nucleic Acids, Wiley, New York.Google Scholar
  42. Zhang, X. and Patel, D.J. (1990)Biochemistry,29, 9451–9466.Google Scholar
  43. Zhang, X. and Patel, D.J. (1991)Biochemistry,30, 4026–4041.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1991

Authors and Affiliations

  • Xiucai Liu
    • 1
  • Huifen Chen
    • 1
  • Dinshaw J. Patel
    • 1
  1. 1.Department of Biochemistry and Molecular BiophysicsCollege of Physicians and Surgeons, Columbia UniversityNew YorkUSA

Personalised recommendations