Journal of Biomolecular NMR

, Volume 2, Issue 6, pp 661–665 | Cite as

Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions

  • Martial Piotto
  • Vladimir Saudek
  • Vladimir Sklenář


A novel approach to tailored selective excitation for the measurement of NMR spectra in non-deuterated aqueous solutions (WATERGATE, WATER suppression by GraAdient-Tailored Excitation) is described. The gradient echo sequence, which effectively combines one selective 180° radiofrequency pulse and two field gradient pulses, achieves highly selective and effective water suppression. This technique is ideally suited for the rapid collection of multi-dimensional data since a single-scan acquisition produces a pure phase NMR spectrum with a perfectly flat baseline, at the highest possible sensitivity. Application to the fast measurement of 2D NOE data of a 2.2. mM solution of a double-stranded DNA fragment in 90% H2O at 5 °C is presented.


Gradient-tailored NMR Selective excitation Water suppression DNA exchangeable protons 2D NOESY 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davis, A.L., Keeler, J., Laue, E.D. and Moskau, D. (1992)J. Magn. Reson.,98, 207–216.Google Scholar
  2. Davis, A.L., Laue, E.D., Keeler, J., Moskau, D. and Lohman, J. (1991)J. Magn. Reson.,94, 637–644.Google Scholar
  3. Guéron, M., Plateau, P. and Decorps, M. (1991)Prog. NMR Spectr.,23, 135–209.Google Scholar
  4. Hore, P. (1989)Methods Enzymol.,176, 64–77.PubMedGoogle Scholar
  5. Hoult, D.I. (1976)J. Magn. Reson.,21, 337–347.Google Scholar
  6. Hurd, R.E. (1990)J. Magn. Reson.,87, 422–428.Google Scholar
  7. Hurd, R.E. and John, B.K. (1991)J. Magn. Reson.,91, 648–653.Google Scholar
  8. Jesson, J.P., Meakin, P. and Kneissel, G. (1973)J. Am. Chem. Soc.,95, 618–620.Google Scholar
  9. John, B.K., Plant, D., Webb, P. and Hurd, R.E. (1992)J. Magn. Reson.,98, 200–206.Google Scholar
  10. Kumar, A., Ernst, R.R. and Wüthrich, K. (1980)Biochem. Biophys. Res. Commun.,95, 1–6.PubMedGoogle Scholar
  11. Macura, S. and Ernst, R.R. (1980)Mol. Phys.,41, 95–117.Google Scholar
  12. Marion, D., Ikura, M. and Bax, A. (1989a)J. Magn. Reson.,84, 425–430.Google Scholar
  13. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989b)J. Magn. Reson.,85, 393–399.Google Scholar
  14. Otting, G. and Wüthrich, K. (1989)J. Am. Chem. Soc.,111, 1871–1875.Google Scholar
  15. Otting, G., Liepinsh, E., Farmer, B.T. and Wüthrich, K. (1991)J. Biomol. NMR,1, 209–215.PubMedGoogle Scholar
  16. Sklenář, V. and Bax, A. (1987)J. Magn. Reson.,75, 378–383.Google Scholar
  17. Sklenář, V. (1990) InNMR Application in Biopolymers (Eds, Finley, J., Schmidt, S.J. and Seriani, A.S.) Academic Press, San Diego, pp. 63–84.Google Scholar
  18. Vuister, G.W., Boelens, R., Kaptein, R., Hurd, R.E., John, B. and van Zilj, P.C.M. (1991)J. Am. Chem. Soc.,113, 9688–9690.Google Scholar
  19. Wüthrich, K. (1986)NMR of Proteins and Nucleic Acids, Wiley, New York.Google Scholar
  20. Zilj, P. and Moonen, C.T.W. (1990)J. Magn. Reson.,87, 18–25.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1992

Authors and Affiliations

  • Martial Piotto
    • 1
  • Vladimir Saudek
    • 2
  • Vladimir Sklenář
    • 2
  1. 1.Unite Mixte de Recherche Bruker, CNRSUniversite Louis Pasteur UMR50Wissembourg CedexFrance
  2. 2.Marion Merrell Dow Research InstituteStrasbourg CedexFrance

Personalised recommendations