Journal of Biomolecular NMR

, Volume 2, Issue 5, pp 527–533

Quantitative measurement of small through-hydrogen-bond and ‘through-space’1H-113Cd and1H-199Hg J couplings in metal-substituted rubredoxin fromPyrococcus furiosus

  • Paul R. Blake
  • Brian Lee
  • Michael F. Summers
  • Michael W. W. Adams
  • Jac-Bum Park
  • Zhi Hao Zhou
  • Ad Bax
Article

Summary

A method is described for measurement of small unresolvable heteronuclear J couplings. The method is based on quantitative analysis of a phase-purged heteronuclear spin-echo difference spectrum, and is demonstrated for measuring1H-113Cd and1H-199Hg J couplings in metal-substituted rubredoxin (Mr ∼ 5.4 kDa) fromPyrococcus furiosus. Couplings from cadmium to backbone amide protons that are hydrogen bonded to the Cys-S atoms directly bonded to Cd vary from smaller than 0.3 to 1.8 Hz; a ‘through-space’ coupling between Cd and the protons of an alanine methyl group was measured to be 0.3 Hz. Couplings to199Hg are significantly larger and fall in the 0.4–4 Hz range.

Keywords

J coupling 113Cd 199Hg Rubredoxin Hydrogen bonding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adman, E., Watenpaugh, E.D. and Jensen, L.H. (1975)Proc. Natl. Acad. Sci. USA,72, 4854–4858.Google Scholar
  2. Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. and Tschudin, R. (1989)Magn. Reson.,86, 304–318.Google Scholar
  3. Bax, A., Max, D. and Zax, D. (1992)J. Am. Chem. Soc.,114, 6924–6925.Google Scholar
  4. Blake, P.R., Park, J.B., Adams, M.W.W. and Summers, M.F. (1992a)J. Am. Chem. Soc.,114, 4931–4933.Google Scholar
  5. Blake, P.R., Park, J.-B., Zhou, Z.H., Hare, D.R., Adams, M.W.W. and Summers, M.F. (1992b)Protein Science, in press.Google Scholar
  6. Blake, P.R., Day, M.W., Hsu, B.T., Joshua-Tor, L., Park, J.B., Hare, D.R., Adams, M.W.W., Rees, D.C. and Summers, M.F. (1992c)Protein Science, in press.Google Scholar
  7. Day, M.W., Hsu, B.T., Joshua-Tor, L., Park, J., Zhou, Z.H., Adams, M.W.W. and Rees, D. (1992)Protein Science, in press.Google Scholar
  8. Freeman, R., Mareci, T.H. and Morris, G.A. (1981)J. Magn. Reson.,42, 341–345.Google Scholar
  9. Griesinger, C., Serensen, O.W. and Ernst, R.R. (1986)J. Chem. Phys.,85, 6837–6843.Google Scholar
  10. Mallory, F.B., Luzik, E.D., Mallory, C.W. and Carroll, P.J. (1992)J. Org. Chem.,57, 366–370.Google Scholar
  11. Santos, R.A., Gruff, E.S., Koch, S.A. and Harbison, G.S. (1991)J. Am. Chem. Soc.,113, 469–475.Google Scholar
  12. Serensen, O.W. and Ernst, R.R. (1983)J. Magn. Renon.,51, 477–489.Google Scholar
  13. Wimperis, S. and Bodenhausen, G. (1989)Mol. Phys.,66, 897–919.Google Scholar
  14. Worgötter, E., Wagner, G., Vasak, M., Kagi, J.H.R. and Wüthrich, K. (1988)J. Am. Chem. Soc.,110, 2388–2393.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1992

Authors and Affiliations

  • Paul R. Blake
    • 1
  • Brian Lee
    • 1
  • Michael F. Summers
    • 1
  • Michael W. W. Adams
    • 2
  • Jac-Bum Park
    • 2
  • Zhi Hao Zhou
    • 2
  • Ad Bax
    • 3
  1. 1.Department of Chemistry and BiochemistryUniversity of Maryland Baltimore CountyBaltimoreUSA
  2. 2.Department of Biochemistry and Center for Metalloenzyme StudiesUniversity of GeorgiaAthensUSA
  3. 3.Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations