Advertisement

aequationes mathematicae

, Volume 27, Issue 1, pp 87–96 | Cite as

Funktionalgleichungen für konstante Funktionen

  • Norbert Steinmetz
  • Peter Volkmann
Research Paper

AMS (1980) subject classification

Primary 39B10, 30D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Dennler, Günther, Bestimmung sämtlicher meromorpher Lösungen der Funktionalgleichung\(f(z) = \frac{1}{k}\sum\limits_{h = 0}^{k - 1} {f\left( {\frac{{z + h}}{k}} \right)} \). Wiss. Z. Friedrich-Schiller-Univ. Jena/Thüringen14 (1965), 347–350.Google Scholar
  2. [2]
    Dhombres, Jean,Some aspects of functional equations. Lecture Notes, Department of Mathematics, Chulalongkorn University, Bangkok 1979.Google Scholar
  3. [3]
    Forti, Gian Luigi,On some conditional Cauchy equations on thin sets. Boll. Un. Mat. Ital. B(6),2 (1983), 391–402.Google Scholar
  4. [4]
    Mohr, Ernst,Elementarer Beweis für die Partialbruchzerlegung des Cotangens. Z. Angew. Math. Mech.33 (1953), 247–248.Google Scholar
  5. [5]
    Sablik, Maciej,Note on a Cauchy conditional equation. Manuskript.Google Scholar
  6. [6]
    Steinmetz, Norbert,On the functional equation ϕ(x) = ϕ(px) + ϕ(qx + p). C.R. Math. Rep. Acad. Sci. Canada4 (1982), 367–371.Google Scholar
  7. [7]
    Zdun, Marek,On the uniqueness of solutions of the functional equation ϕ(x + f(x)) = ϕ(x) + ϕ(f(x)). Aequationes Math.8 (1972), 229–232.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1984

Authors and Affiliations

  • Norbert Steinmetz
    • 1
  • Peter Volkmann
    • 1
  1. 1.Mathematisches Institut IUniversität KarlsruheKarlsruhe 1West Germany

Personalised recommendations