Advertisement

Journal of Optimization Theory and Applications

, Volume 86, Issue 3, pp 719–743 | Cite as

Diewert-Crouzeix conjugation for general quasiconvex duality and applications

  • P. T. Thach
Contributed Papers

Abstract

A complicated factor in quasiconvex duality is the appearance of extra parameters. In order to avoid these extra parameters, one often has to restrict the class of quasiconvex functions. In this paper, by using the Diewert-Crouzeix conjugation, we present a duality without an extra parameter for general quasiconvex minimization problem. As an application, we prove a decentralization by prices for the Von Neumann equilibrium problem.

Key Words

Quasiconvex functions duality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greenberg, H. J., andPierskalla, W. P.,Surrogate Mathematical Programming, Operations Research, Vol. 18, pp. 924–939, 1970.Google Scholar
  2. 2.
    Greenberg, H. J., andPierskalla, W. P. Quasiconjugate Functions and Surrogate Duality, Cahiers Centre Etudes Recherche Operationnelle, Vol. 15, pp. 437–448, 1973.Google Scholar
  3. 3.
    Crouzeix, J. P.,Polaires Quasi-Convexes et Dualité, Compte Rendus de l'Académie des Sciences de Paris, Vol. A279, pp. 955–958, 1974.Google Scholar
  4. 4.
    Crouzeix, J. P.,Contributions a l'Étude des Fonctions Quasiconvexes, PhD Thesis, Université de Clermont II, Aubière, France, 1977.Google Scholar
  5. 5.
    Crouzeix, J. P.,Continuity and Differentiability Properties of Quasi-Convex Functions on R m, General Concavity in Optimization and Economics, Edited by S. Schaible and W. T. Ziemba, Academic Press, New York, New York, pp. 109–129, 1981.Google Scholar
  6. 6.
    Crouzeix, J. P.,A Duality Framework in Quasiconvex Programming, Generalized Concavity in Optimization and Economics, Edited by S. Schaible and W. T. Ziemba, Academic Press, New York, New York, pp. 207–225, 1981.Google Scholar
  7. 7.
    Crouzeix, J. P.,Duality between Direct and Indirect Utility Functions, Journal of Mathematical Economics, Vol. 12, pp. 149–165, 1983.Google Scholar
  8. 8.
    Diewert, W. E.,Applications of Duality Theory, Frontiers of Quantitative Economics 2, Edited by M. D. Intriligator and D. A. Kendrick, North Holland, Amsterdam, Holland, pp. 106–171, 1974.Google Scholar
  9. 9.
    Diewert, W. E.,Duality Approaches to Microeconomic Theory, Handbook of Mathematical Economics 2, Edited by K. J. Arrow and M. D. Intriligator, North Holland, Amsterdam, Holland, pp. 535–599, 1982.Google Scholar
  10. 10.
    Diewert, W. E.,Generalized Concavity and Economics, Generalized Concavity in Optimization and Economics, Edited by S. Schaible and W. T. Ziemba, Academic Press, New York, New York, pp. 511–541, 1981.Google Scholar
  11. 11.
    Diewert, W. E., Avriel, M., andZang, I.,Nine Kinds of Quasiconcavity and Concavity, Journal of Economic Theory, Vol. 25, pp. 397–420, 1981.Google Scholar
  12. 12.
    Schaible, S.,Fractional Programming, II: On Dinkelbach's Algorithm, Management Science, Vol. 22, pp. 868–873, 1976.Google Scholar
  13. 13.
    Schaible, S., andZiemba, W. T., Editors,Generalized Concavity in Optimization and Economics, Academic Press, New York, New York, 1981.Google Scholar
  14. 14.
    Martinez-Legaz, J. E.,Un Concepto Generalizato de Conjugation: Application a las Funciones Quasi-Convexas, Thesis, University of Barcelona, Barcelona, Spain, 1981.Google Scholar
  15. 15.
    Martinez-Legaz, J. E.,A Generalized Concept of Conjugation, Optimization Theory and Applications, Edited by A. Auslender, J. B. Hiriart-Urruty, and W. Oetlli, Marcel Dekker, New York, New York, pp. 45–89, 1983.Google Scholar
  16. 16.
    Martinez-Legaz, J. E.,Quasiconvex Duality Theory by Generalized Conjugation Methods, Optimization, Vol. 19, pp. 603–652, 1988.Google Scholar
  17. 17.
    Martinez-Legaz, J. E.,Duality between Direct and Indirect Utility Functions under Minimal Hypotheses, Journal of Mathematical Economics, Vol. 20, pp. 199–209, 1991.Google Scholar
  18. 18.
    Oettli, W.,Optimality Condition Involving Generalized Convex Mappings, Generalized Concavity in Optimization and Economics, Edited by S. Schaible and W. T. Ziemba, Academic Press, New York, New York, pp. 227–238, 1981.Google Scholar
  19. 19.
    Oettli, W.,Optimality Conditions for Programming Problems Involving Multivalued Mappings, Applied Mathematics, Edited by B. Korte, North Holland, Amsterdam, Holland, pp. 196–226, 1982.Google Scholar
  20. 20.
    Singer, I.,A General Theory of Dual Optimization Problems, Journal of Mathematical Analysis and Applications, Vol. 116, pp. 77–130, 1986.Google Scholar
  21. 21.
    Passy, U., andPrisman, E. Z.,Conjugacy in Quasiconvex Programming, Mathematical Programming, Vol. 30, pp. 121–146, 1984.Google Scholar
  22. 22.
    Passy, U., andPrisman, E. Z.,A Convex-Like Duality Scheme for Quasiconvex Programs, Mathematical Programming, Vol. 32, pp. 278–300, 1985.Google Scholar
  23. 23.
    Avriel, M., Diewert, W. E., Shaible, S., andZang, I.,Generalized Concavity, Plenum Press, New York, New York, 1988.Google Scholar
  24. 24.
    Penot, J. P., andVolle, M.,On Quasiconvex Duality, Mathematics of Operations Research, Vol. 4, pp. 597–625, 1990.Google Scholar
  25. 25.
    Barbara, A., andCrouzeix, J. P.,Concave Gauge Functions and Applications, Preprint, Mathematiques Appliqueés, Université Blaise Pascal, Aubière, France, 1993.Google Scholar
  26. 26.
    Thach, P. T.,Quasiconjugates of Functions, Duality Relationship between Quasiconvex Minimization under a Reverse Convex Constraint and Quasiconvex Maximization under a Convex Constraint, and Applications, Journal of Mathematical Analysis and Applications, Vol. 159, pp. 299–322, 1991.Google Scholar
  27. 27.
    Thach, P. T.,A Nonconvex Duality with a Zero Gap and Applications, SIAM Journal on Optimization, Vol. 4, pp. 44–64, 1994.Google Scholar
  28. 28.
    Thach, P. T., andKojima, M.,Generalized Convexity and Variational Inequalities for Quasiconvex Minimization, IHSS Report 92-50, Tokyo Institute of Technology, 1992.Google Scholar
  29. 29.
    Von Neumann, J., andMorgenstern, O.,Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944.Google Scholar
  30. 30.
    Stoer, J., andWitzgall, C.,Convexity and Optimization in Finite Dimensions, I, Springer Verlag, Berlin, Germany, 1970.Google Scholar
  31. 31.
    Tind, J.,Blocking and Antiblocking Sets, Mathematical Programming, Vol. 6, pp. 157–166, 1971.Google Scholar
  32. 32.
    Fiacco, A. V.,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, New York, 1983.Google Scholar
  33. 33.
    Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • P. T. Thach
    • 1
  1. 1.Institute of Human and Social SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations