Advertisement

Solution differentiability for parametric nonlinear control problems with control-state constraints

  • H. Maurer
  • H. J. Pesch
Contributed Papers

Abstract

This paper considers parametric nonlinear control problems subject to mixed control-state constraints. The data perturbations are modeled by a parameterp of a Banach space. Using recent second-order sufficient conditions (SSC), it is shown that the optimal solution and the adjoint multipliers are differentiable functions of the parameter. The proof blends numerical shooting techniques for solving the associated boundary-value problem with theoretical methods for obtaining SSC. In a first step, a differentiable family of extremals for the underlying parameteric boundary-value problem is constructed by assuming the regularity of the shooting matrix. Optimality of this family of extremals can be established in a second step when SSC are imposed. This is achieved by building a bridge between the variational system corresponding to the boundary-value problem, solutions of the associated Riccati ODE, and SSC.

Solution differentiability provides a theoretical basis for performing a numerical sensitivity analysis of first order. Two numerical examples are worked out in detail that aim at reducing the considerable deficit of numerical examples in this area of research.

Key Words

Parametric control problems mixed control-state constraints second-order sufficient conditions solution differentiability multipoint boundary-value problems shooting techniques Riccati equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt, W.,Parametric Optimization with Applications to Optimal Control and Sequential Quadratic Programming, Report No. 35, Bayreuther Mathematische Schriften, University of Bayreuth, Bayreuth, Germany, 1991.Google Scholar
  2. 2.
    Colonius, F., andKunisch, K.,Sensitivity Analysis for Optimization Problems in Hilbert Spaces with Bilateral Constraints, Report No. 267, Schwerpunktprogramm Anwendungsbezogene Optimierung und Steuerung der Deutschen Forschungsgemeinschaft, University of Augsburg, Augsburg, Germany, 1991.Google Scholar
  3. 3.
    Dontchev, A. L.,Perturbations, Approximations, and Sensitivity Analysis of Optimal Control Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, Germany, Vol. 52, 1983.Google Scholar
  4. 4.
    Dontchev, A. L., Hager, W. W., Poore, A. B., andYang, B.,Optimality, Stability, and Convergence in Nonlinear Control, Applied Mathematics and Optimization, Vol. 31, pp. 297–326, 1995.CrossRefGoogle Scholar
  5. 5.
    Ito, K., andKunisch, K.,Sensitivity Analysis of Solutions to Optimization Problems in Hilbert Spaces with Applications to Optimal Control and Estimation, Journal of Differential Equations, Vol. 99, pp. 1–40, 1992.CrossRefGoogle Scholar
  6. 6.
    Malanowski, K.,Sensitivity Analysis of Optimization Problems in Hilbert Space with Application to Optimal Control, Applied Mathematics and Optimization, Vol. 21, pp. 1–20, 1991.Google Scholar
  7. 7.
    Malanowski, K.,Second-Order Conditions and Constraint Qualifications in Stability and Sensitivity Analysis of Solutions to Optimization Problems in Hilbert Spaces, Applied Mathematics and Optimization, Vol. 25, pp. 51–79, 1992.CrossRefGoogle Scholar
  8. 8.
    Malanowski, K.,Stability and Sensitivity of Solutions to Nonlinear Optimal Control Problems, Preprint, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland, 1991.Google Scholar
  9. 9.
    Malanowski, K.,Regularity of Solutions in Stability Analysis of Optimization and Optimal Control Problems, Working Paper No. 1/93, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland, 1993.Google Scholar
  10. 10.
    Malanowski, K.,Two-Norm Approach in Stability and Sensitivity Analysis of Optimization and Optimal Control Problems, Advances in Mathematical Sciences and Applications, Vol. 2, pp. 397–443, 1993.Google Scholar
  11. 11.
    Maurer, H., andPesch, H. J.,Solution Differentiability for Parametric Nonlinear Control Problems, SIAM Journal on Control and Optimization, Vol. 32, pp. 1542–1554, 1994.CrossRefGoogle Scholar
  12. 12.
    Bock, H. G.,Zur numerischen Behandlung zustandsbeschränkter Steuerungsprobleme mit Mehrzielmethode und Homotopieverfahren, ZAMM, Vol. 57, pp. T266-T268, 1977.Google Scholar
  13. 13.
    Bock, H. G., andKrämer-Eis, P.,An Efficient Algorithm for Approximate Computation of Feedback Control Laws in Nonlinear Processes, ZAMM, Vol. 61, pp. T330-T332, 1981.Google Scholar
  14. 14.
    Krämer-Eis, P.,Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen, Bonner Mathematische Schriften No. 164, University of Bonn, Bonn, Germany, 1985.Google Scholar
  15. 15.
    Kugelmann, B., andPesch, H. J.,A New General Guidance Method in Constrained Optimal Control, Part 1: Numerical Method, Journal of Optimization Theory and Applications, Vol. 67, pp. 421–435, 1990.CrossRefGoogle Scholar
  16. 16.
    Kugelmann, B., andPesch, H. J.,A New General Guidance Method in Constrained Optimal Control, Part 2: Application to Space Shuttle Guidance, Journal of Optimization Theory and Applications, Vol. 67, pp. 437–446, 1990.CrossRefGoogle Scholar
  17. 17.
    Pesch, H. J.,Echtzeitberechnung fastoptimaler Rückkopplungssteuerungen mit Beschränkungen, Habilitationsschrift, Munich University of Technology, Munich, Germany, 1986.Google Scholar
  18. 18.
    Pesch, H. J.,Real-Time Computation of Feedback Controls for Constrained Optimal Control Problems, Part 1: Neighboring Extremals, Optimal Control Applications and Methods, Vol. 10, pp. 129–145, 1989.Google Scholar
  19. 19.
    Pesch, H. J.,Real-Time Computation of Feedback Controls for Constrained Optimal Control Problems, Part 2: A Correction Method Based on Multiple Shooting, Optimal Control Applications and Methods, Vol. 10, pp. 147–171, 1989.Google Scholar
  20. 20.
    Pesch, H. J.,Optimal Control Problems under Disturbances, Proceedings of the 14th IFIP Conference on System Modelling and Optimization, Leipzig, Germany, 1989; Edited by H. J. Sebastian and K. Tammer, Lecture Notes in Control and Information Science, Springer, Berlin, Germany, Vol. 143, pp. 377–386, 1990.Google Scholar
  21. 21.
    Orrell, D., andZeidan, V.,Another Jacobi Sufficiency Criterion for Optimal Control with Smooth constraints, Journal of Optimization Theory and Applications, Vol. 58, pp. 283–300, 1988.CrossRefGoogle Scholar
  22. 22.
    Zeidan, V.,Sufficiency Conditions with Minimal Regularity Assumption, Applied Mathematics and Optimization, Vol. 20, pp. 19–31, 1989.CrossRefGoogle Scholar
  23. 23.
    Pickenhain, S.,Sufficiency Conditions for Weak Local Minima in Multidimensional Optimal Control Problems with Mixed Control-State Restrictions, Zeitschrift für Analysis und Ihre Anwendungen, Vol. 11, pp. 559–568, 1992.Google Scholar
  24. 24.
    Maurer, H.,The Two-Norm Approach for Second-Order Sufficient Conditions in Mathematical Programming and Optimal Control, Report No. 6/92-N, Angewandte Mathematik und Informatik, University of Münster, Münster, Germany, 1992.Google Scholar
  25. 25.
    Maurer, H., andPickenhain, S.,Second-Order Sufficient Conditions for Optimal Control Problems with Mixed Control-State Constraints, Journal of Optimization Theory and Applications, Vol. 86, pp. 649–667, 1995.CrossRefGoogle Scholar
  26. 26.
    Miele, A., Pritchard, R. E., andDamoulakis, J. N.,Sequential Gradient-Restoration Algorithm for Optimal Control Problems, Journal of Optimization Theory and Applications, Vol. 5, pp. 235–282, 1970.CrossRefGoogle Scholar
  27. 27.
    Miele, A., Iyer, R. R., andWell, K. H.,Modified Quasilinearization and Optimal Initial Choice of the Multipliers, Part 2: Optimal Control Problems, Journal of Optimization Theory and Applications, Vol. 6, pp. 381–409, 1970.CrossRefGoogle Scholar
  28. 28.
    Neustadt, L. W.,Optimization: A Theory of Necessary Conditions, Princeton University Press, Princeton, New Jersey, 1976.Google Scholar
  29. 29.
    Zeidan, V.,Sufficiency Criteria via Focal Points and via Coupled Points, SIAM Journal Control and Optimization, Vol. 30, pp. 82–98, 1992.CrossRefGoogle Scholar
  30. 30.
    Maurer, H.,First- and Second-Order Sufficient Optimality Conditions in Mathematical Programming and Optimal Control, Mathematical Programming Study, Vol. 14, pp. 163–177, 1981.Google Scholar
  31. 31.
    Sorger, G.,Sufficient Optimality Conditions for Nonconvex Problems with State Constraints, Journal of Optimization Theory and Applications, Vol. 62, pp. 289–310, 1989.CrossRefGoogle Scholar
  32. 32.
    Reid, W. T.,Riccati Differential Equations, Academic Press, New York, New York, 1972.Google Scholar
  33. 33.
    Bulirsch, R.,Die Mehrzielmethode zur Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung, Report of the Carl-Cranz Gesellschaft, DLR, Oberpfaffenhofen, Germany, 1971.Google Scholar
  34. 34.
    Oberle, H. J., andGrimm, W.,BNDSCO—A Program for the Numerical Solution of Optimal Control Problems, Internal Report No. 515-89/22, Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen, Germany, 1989.Google Scholar
  35. 35.
    Fan, L. T.,The Continuous Maximum Principle, John Wiley and Sons, New York, New York, 1966.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • H. Maurer
    • 1
  • H. J. Pesch
    • 2
  1. 1.Institut für Numerische und Instrumentelle MathematikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Mathematisches InstitutTechnische Universität MünchenMünchenGermany

Personalised recommendations