Advertisement

Pflügers Archiv

, Volume 431, Issue 4, pp 519–526 | Cite as

Myocardial segment shrinkage during coronary reperfusion in situ

Relation to hypercontracture and myocardial necrosis
  • José A. Barrabés
  • David Garcia-Dorado
  • Marisol Ruiz-Meana
  • H. Michael Piper
  • Julia Solares
  • Miguel A. González
  • Juan Oliveras
  • M. Pilar Herrejón
  • J. Soler Soler
Original Article

Abstract

We have investigated the changes in myocardial segment length induced by reperfusion, and their relation to myocyte hypercontracture and contraction band necrosis. Regional wall function was monitored by ultrasonic gauges in 39 pigs submitted to 48-min occlusion of the left anterior descending coronary artery (LAD) and 6 h of reperfusion. Infarct size (triphenyltetrazolium reaction), the extent of contraction band necrosis (quantitative histology) and myocardial water content (desiccation) were measured. Reperfusion induced a marked reduction in end-diastolic length of the LAD segment in all animals, maximal within 15 min after reflow. After 30 min of reperfusion, end-diastolic length of the LAD segment remained below the basal value in 15 animals. The 15 animals that showed shrinkage of the reperfused segment did not differ from the remaining animals in heart rate, aortic pressure, or control segment variables, but had larger infarcts (mean ± SEM: 32.1 ± 5.4 vs 12.1 ± 3.2% of the area at risk,P = 0.003). There was an inverse correlation between end-diastolic length of the LAD segment after 30 min of reperfusion and infarct percentage (r = -0.72) or the extent of contraction band necrosis (r = -0.71). End-diastolic length reduction was more pronounced in larger infarcts despite a more severe myocardial oedema. Neither systolic shortening of the LAD segment nor end-diastolic length or systolic shortening of the control segment, or haemodynamic variables after 30 min of reperfusion correlated to infarct percentage or to the extent of contraction band necrosis. It is concluded that myocardial segment shrinkage during reperfusion reflects myocyte hypercontracture leading to contraction band necrosis.

Key words

Myocardial infarction Ischaemia Functional studies Reperfusion Hypercontracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allshire A, Piper HM, Cuthbertson KS, Cobbold PH (1987) Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J 244:381–385Google Scholar
  2. 2.
    Bing OH, Keefe JF, Wolk MJ, Finkelstein LJ, Levine HJ (1971) Tension prolongation during recovery from myocardial hypoxia. J Clin Invest 50:660–666Google Scholar
  3. 3.
    Bouchardy B, Majno G (1974) Histopathology of early myocardial infarcts. Am J Pathol 74:301–330Google Scholar
  4. 4.
    Ferrari R, di Lisa F, Raddino R, Visioli O (1982) The effects of ruthenium red on mitochondrial function during postischaemic reperfusion. J Mol Cell Cardiol 14:737–740Google Scholar
  5. 5.
    Fishbein MC, Maclean D, Maroko PR (1978) The histopathologic evolution of myocardial infarction. Chest 73:843–849Google Scholar
  6. 6.
    Frank JS, Brady AJ, Farnsworth S, Mottino G (1986) Ultrastructure and function of isolated myocytes after calcium depletion and repletion. Am J Physiol 250:H265-H275Google Scholar
  7. 7.
    Ganote CE (1983) Contraction band necrosis and irreversible myocardial injury. J Mol Cell Cardiol 15:67–73Google Scholar
  8. 8.
    Garcia-Dorado D, Théroux P, Solares J, Alonso J, Fernandez-Avilés F, Elizaga J, Soriano J, Betas J, Munoz R (1990) Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion. Am J Pathol 173:301–311Google Scholar
  9. 9.
    Garcia-Dorado D, Théroux P, Duran JM, Solares J, Alonso J, Sanz E, Munoz R, Elizaga J, Botas J, Fernandez-Avilés F, Soriano J, Esteban E (1992) Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85:1160–1174Google Scholar
  10. 10.
    Garcia-Dorado D, Théroux P, Munoz R, Alonso J, Elizaga J, Fernandez-Avilés F, Betas J, Solares J, Soriano J, Duran JM (1992) Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. Am J Physiol 262:H17-H22Google Scholar
  11. 11.
    Hearse DJ, Humphrey SM, Chain EB (1973) Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol 5:395–407Google Scholar
  12. 12.
    Heyndrickx GR, Amano J, Patrick TA, Manders WT, Rogers GG, Rosendorff C, Vatner SF (1985) Effects of coronary artery reperfusion on regional myocardial blood flow and function in conscious baboons. Circulation 71:1029–1037Google Scholar
  13. 13.
    Karch SB, Billingham ME (1986) Myocardial contraction band revisited. Hum Pathol 17:9–13Google Scholar
  14. 14.
    Miyazaki S, Fujiwara H, Onodera T, Kihara Y, Matsuda M, Wu DJ, Nakamura Y, Kumada T, Sasayama S, Kawai C, Hamashima Y (1987) Quantitative analysis of contraction band and coagulation necrosis after ischemia and reperfusion in the porcine heart. Circulation 75:1074–1082Google Scholar
  15. 15.
    Nishida M, Borzak S, Kraemer B, Navas JB, Kelly RA, Smith TW, Marsh JD (1993) Role of cation gradients in hypercontracture of myocytes during simulated ischemia and reperfusion. Am J Physiol 264:111896–111906Google Scholar
  16. 16.
    Ovize M, Przyklenk K, Hale SL, Kloner RA (1992) Preconditioning does not attenuate myocardial stunning. Circulation 85:2247–2254Google Scholar
  17. 17.
    Rivers JT, Norris RM, Cross DB (1991) Changes in systolic and postsystolic shortening in ischemic and stunned canine myocardium by isoproterenol or calcium. Coron Artery Dis 2:101–111Google Scholar
  18. 18.
    Roos KP (1986) Length, width, and volume changes in osmotically stressed myocytes. Am J Physiol 251:H1373–111378Google Scholar
  19. 19.
    Ruiz-Meana M, Garcia-Dorado D, Gonzalez MA, Barrabés J, Soler-Soler J (1995) Effect of osmotic stress on sarcolemmal integrity of isolated myocytes following transient metabolic inhibition. Cardiovasc Res 30:64–69Google Scholar
  20. 20.
    Sanz E, Garcia Dorado D, Oliveras J, Barrabés JA, Gonzalez MA, Ruiz-Meana M, Solares J, Carreras MJ, García-Lafuente A, Desco M, Soler-Soler J (1995) Dissociation between anti-infarct effect and anti-edema effect of ischemic preconditioning. Am J Physiol 268:H233–11241Google Scholar
  21. 21.
    Schlüter KD, Schwartz P, Siegmund B, Piper HM (1991) Prevention of the oxygen paradox in hypoxic-reoxygenated hearts. Am J Physiol 261:11416–11423Google Scholar
  22. 22.
    Siegmund B, Koop A, Klietz T, Schwartz P, Piper HM (1990) Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol 258:H285-H291Google Scholar
  23. 23.
    Siegmund B, Klietz T, Schwartz P, Piper HM (1991) Temporary contractile blockade prevents hypercontracture in anoxicreoxygenated cardiomyocytes. Am J Physiol 260:H426-H435Google Scholar
  24. 24.
    Siegmund B, Zude R, Piper HM (1992) Recovery of anoxicreoxygenated cardiomyocytes from severe Ca2+ overload. Am J Physiol 263:H1262-H1269Google Scholar
  25. 25.
    Siegmund B, Schlüter KD, Piper HM (1993) Calcium and the oxygen paradox. Cardiovasc Res 27:1778–1783Google Scholar
  26. 26.
    Silverman HS, Ninomiya M, Blank PS, Hano O, Miyata H, Spurgeon HA, Lakatta EG, Stern MD (1991) A cellular mechanism for impaired posthypoxic relaxation in isolated cardiac myocytes. Altered myofilament relaxation kinetics at reoxygenation. Circ Res 69:196–208Google Scholar
  27. 27.
    Steenbergen C, Hill ML, Jennings RB (1987) Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circ Res 60:478–486Google Scholar
  28. 28.
    Steenbergen C; Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707Google Scholar
  29. 29.
    Théroux P, Franklin D, Ross J Jr, Kemper WS (1974) Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ Res 35:896–908Google Scholar
  30. 30.
    Vander Heide RS, Angelo JP, Altschuld RA, Ganote CE (1986) Energy dependence of contraction band formation in perfused hearts and isolated adult myocytes. Am J Pathol 125:55–68Google Scholar
  31. 31.
    Weisfeldt ML, Armstrong P, Scully HE, Sanders CA, Daggett WM (1974) Incomplete relaxation between beats after myocardial hypoxia and ischemia. J Clin Invest 53:1626–1636Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • José A. Barrabés
    • 1
  • David Garcia-Dorado
    • 1
  • Marisol Ruiz-Meana
    • 1
  • H. Michael Piper
    • 2
  • Julia Solares
    • 3
  • Miguel A. González
    • 1
  • Juan Oliveras
    • 1
  • M. Pilar Herrejón
    • 1
  • J. Soler Soler
    • 1
  1. 1.Servicio de CardiologiaHospital General Universitario Vall d'HebronBarcelonaSpain
  2. 2.Physiologisches InstitutJustus Liebig UniversitatGiessenGermany
  3. 3.Servicio de Anatomia PatológicaHospital San Pedro de AlcántaraCáceresSpain

Personalised recommendations