Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Indirect evidence of alteration in the expression of the rDNA genes in interspecific hybrids betweenDrosophila melanogaster andDrosophila simulans

  • 45 Accesses

Abstract

Crosses betweenDrosophila melanogaster females andD. simulans males produce viable hybrid females, while males are lethal. These males are rescued if they carry theD. simulans Lhr gene. This paper reports that females of the wild-typeD. melanogaster population Staket do not produce viable hybrid males when crossed withD. simulans Lhr males, a phenomenon which we designate as the Staket phenotype. The agent responsible for this phenomenon was found to be the StaketX chromosome (X mel,Stk). Analysis of the Staket phenotype showed that it is suppressed by extra copies ofD. melanogaster rDNA genes and that theX mel,Stk chromosome manifests a weak bobbed phenotype inD. melanogaster X mel,Stk/0 males. The numbers of functional rDNA genes inX mel,Stk andX mel,y w (control) chromosomes were found not to differ significantly. Thus a reduction in rDNA gene number cannot account for the weak bobbedX mel,Stk phenotype let alone the Staket phenotype. The rRNA precursor molecules transcribed from theX mel,Stk rDNA genes seem to be correctly processed in both intraspecific (melanogaster) and interspecific (melanogaster-simulans) conditions. It is therefore suggested that theX mel,Stk rDNA genes are inefficiently transcribed in themelanogaster-simulans hybrids.

This is a preview of subscription content, log in to check access.

References

  1. Beckingham K (1982) Insect rDNA. In: Busch H, Rothblum L (eds), The cell nucleus vol 10, part A. Academic Press, New York, pp 205–269

  2. Breen TR, Lucchesi JC (1986) Analysis of the dosage compensation of a specific transcript inDrosophila melanogaster. Genetics 112:483–491

  3. Campuzano S, Balcells LL, Villares R, Carramolino L, García-Alonso L, Modolell J (1986) Excess-functionHairy-wing mutations caused by gypsy and copia insertions within structural genes of theachaete-scute locus ofDrosophila. Cell 44:303–312

  4. Coen ES, Dover GA (1982) Multiple PolI initiation sequences in rDNA spacers ofDrosophila melanogaster. Nucleic Acids Res 10:7017–7026

  5. Coen ES, Dover GA (1983) Unequal exchange and the coevolution of X and Y rDNA arrays inDrosophila melanogaster. Cell 33:849–855

  6. Dover GA, Flavell RB (1984) Molecular coevolution: DNA divergence and the maintenance of function. Cell 38:622–623

  7. Durica DS, Krider HM (1977) Studies on the ribosomal RNA cistrons in interspecificDrosophila hybrids. Dev Biol 59:62–74

  8. Glover DM, Hogness DS (1977) A novel arrangement of the 18S and 28S sequences in a repeating unit ofDrosophila melanogaster rDNA. Cell 10:167–176

  9. Goodrich-Young C, Krider HM (1989) Nucleolar dominance and replication dominance inDrosophila interspecific hybrids. Genetics 123:349–358

  10. Granadino B, Campuzano S, Sánchez L (1990) TheDrosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. EMBO 19:2597–2602

  11. Grummt I, Roth E, Paule MR (1982) Ribosomal RNA transcription in vitro is species specific. Nature 296:173–176

  12. Hayward DC, Glover DM (1989) The promoters and spacers in the rDNAs of themelanogaster species subgroup ofDrosophila. Gene 77:271–285

  13. Jordan BR (1974) “2S” RNA, a new ribosomal RNA component in culturedDrosophila cells. FEBS Lett 44:39–42

  14. Jordan BR (1975) Demonstration of intact 26S ribosomal RNA molecules inDrosophila cells. J Mol Biol 98:277–280

  15. Jordan BR, Glover DM (1977) 5.8S and 2S rDNA is located in the “transcribed spacer” region between the 18S and 26S rRNA genes inDrosophila melanogaster. FEBS Lett 78:271–274

  16. Jordan BR, Jourdan R, Jacq B (1976) Late steps in the maturation ofDrosophila 26S ribosomal RNA: generation of 5.8S and 2S RNAs by cleavage occurring in the cytoplasm. J Mol Biol 101:85–105

  17. Kay MA, Jacobs-Lorena M (1987) Developmental analysis of ribosome synthesis inDrosophila. Trends Genet 3:347–351

  18. Kidd SM, Glover DM (1981)Drosophila melanogaster ribosomal DNA containing type II insertions is variably transcribed in different strains and tissues. J Mol Biol 151:645–662

  19. Lohe AR, Roberts PA (1990) An unusual Y chromosome ofDrosophila simulans amplified rDNA spacer without rRNA genes. Genetics 125:399–406

  20. Lindsley DL, Zimm G (1992) The genome ofDrosophila melanogaster. Academic Press, San Diego

  21. Long EO, Dawid IB (1979) Expression of ribosomal DNA insertions inDrosophila melanogaster. Cell 18:1185–1196

  22. Long EO, Rebbert ML, Dawid IB (1981) Nucleotide sequence of the initiation site for ribosomal DNA transcription inDrosophila melanogaster: comparison of genes with and without insertions. Proc Natl Acad Sci USA 78:1513–1517

  23. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  24. Meyerowitz EM, Hogness DS (1982) Molecular organization of aDrosophila puff site that responds to ecdysone. Cell 28:165–176

  25. Miesfeld R, Arnheim N (1984) Species-specific rDNA transcription is due to promoter-specific binding factors. Mol Cell Biol 4:221–227

  26. Miller JR, Hayward DC, Glover DM (1983) Transcription of the “non-transcribed” spacer ofDrosophila melanogaster rDNA. Nucleic Acids Res 11:11–19

  27. Mishima Y, Financsek I, Kominami R, Muramatsu M (1982) Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal RNA genes: identification of a species-dependent initiation factor. Nucleic Acids Res 10:6659–6669

  28. Reeder RH (1984) Enhancers and ribosomal gene spacers. Cell 38:349–351

  29. Rieger R, Nicoloff H, Anastassova-Kristeva M (1979) “Nucleolar Dominance” in interspecific hybrids and translocation lines — a review. Biol Zbl 98:385–398

  30. Ritossa FM, Spiegelman S (1965) Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region ofDrosophila melanogaster. Proc Natl Acad Sci USA 53:737–745

  31. Ritossa FM (1976) The bobbed locus. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila, vol 1b. Academic Press, London, pp 801–846

  32. Roiha H, Miller JR, Woods LC, Glover DM (1981) Arrangements and rearrangements of sequences flanking the two types of rDNA insertion inD. melanogaster Nature 290:749–753

  33. Sánchez L, Granadino B, Vicente L (1994) Clonal analysis in hybrids betweenDrosophila melanogaster andDrosophila simulans. Roux's Arch Dev Biol 204:112–117

  34. Schäfer U, Schäfer M (1980) Localization of the ribosomal RNA genes inDrosophila melanogaster. Chromosoma 79:287–291

  35. Simeone A, de Falco A, Macino G, Boncinelli E (1982) Sequence organization of the ribosomal spacer ofDrosophila melanogaster. Nucleic Acids Res 10:8263–8272

  36. Skinner JA, Ohrlein A, Grummt I (1984) In vitro mutagenesis and transcriptional analysis of a mouse ribosomal promoter element. Proc Natl Acad Sci USA 81:2137–2141

  37. Sollner-Webb B, Mougey EB (1991) News from the nucleolus: rRNA gene expression. Trends Biochem Sci 16:58–62

  38. Sturtevant AH (1920) Genetic studies onDrosophila simulans. I. Introduction. Hybrids withDrosophila melanogaster. Genetics 5:488–500

  39. Sturtevant AH (1929) The genetics ofDrosophila simulans. Carnegie Inst Wash Publ 399:1–62

  40. Tartof KD, Dawid IB (1976) Similarities and differences in the structural organization of X and Y chromosome rDNA genes ofDrosophila. Nature 263:27–30

  41. Tautz D, Dover GA (1986) Transcription of the tandem array of ribosomal DNA inDrosophila melanogaster does not terminate at any fixed point. EMBO J 5:1267–1273

  42. Watanabe TK (1979) A gene that rescues the lethal hybrids betweenDrosophila melanogaster andDrosophila simulans. Jpn J Genet 54:325–331

  43. Wellauer PK, Dawid IB (1977) The structural organization of the ribosomal DNA inDrosophila melanogaster. Cell 10:193–212

  44. Wellauer PK, Dawid IB, Tartof KD (1978) X and Y chromosome ribosomal DNA ofDrosophila: comparison of spacers and insertions. Cell 14:269–278

  45. White RL, Hogness DS (1977) R-loop mapping of the 18S and 28S sequences in the long and short repeating units ofDrosophila melanogaster rDNA. Cell 10:177–192

  46. Yagura T, Yagura M, Muramatsu M (1979)Drosophila melanogaster has different ribosomal RNA sequences on X and Y chromosomes J Mol Biol 133:533–547

Download references

Author information

Correspondence to Lucas Sánchez.

Additional information

Communicated by J. A. Campos-Ortega

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Granadino, B., Penalva, L.O.F. & Sánchez, L. Indirect evidence of alteration in the expression of the rDNA genes in interspecific hybrids betweenDrosophila melanogaster andDrosophila simulans . Molec. Gen. Genet. 250, 89–96 (1996). https://doi.org/10.1007/BF02191828

Download citation

Key words

  • rDNA genes
  • Hybrids
  • Drosophila melanogaster
  • Drosophila simulans