Molecular and General Genetics MGG

, Volume 248, Issue 6, pp 719–726 | Cite as

Characterization of thelet-653 gene inCaenorhabditis elegans

  • Steven J. M. Jones
  • David L. Baillie
Original Paper


A mutation in thelet-653 gene ofCaenorhabditis elegans results in larval death. The lethal arrest is concurrent with the appearance of a vacuole anterior to the lower pharyngeal bulb. The position of the vacuole is consistent with a dysfunction of the secretory/excretory apparatus. Germline transformation rescue experiments were able to position thelet-653 gene to two overlapping cosmid subclones. Sequence data generated from both cDNA and genomic DNA subclones indicated thatlet-653 encodes a mucin-like protein. Our characterization suggests that a mucin-like protein is essential for effective functioning of the secretory/excretory apparatus withinC. elegans.

Key words

Caenorhabditis elegans let-653 Mucin Excretory/secretory apparatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi M, Hornig H, Weissmann C (1987) 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice consensus not by the conserved 5′ GU. Cell 50:237–246Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  3. Anderson MP, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251:679–682Google Scholar
  4. Barstead RJ, Waterston RH (1989) The basal component of the nematode dense-body is vinculin. J Biol Chem 114:715–724Google Scholar
  5. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. J Cell Biol 67:835–851Google Scholar
  6. Blumental T, Thomas J (1988)Cis andtrans mRNA splicing inC. elegans. Trends Genet 4:305–309Google Scholar
  7. Brenner S (1974) The genetics ofCaenorhabditis elegans. Genetics 115:71–94Google Scholar
  8. Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid sequences with ESEE. Comp Appl Biol Sci 5:233–234Google Scholar
  9. Cheng PW, Boat TF, Cranfill K, Yankaskas JR, Boucher RC (1989) Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 84:68–72Google Scholar
  10. Clark DV (1990) Theunc-22(IV) region ofCaenorhabditis elegans: genetic analysis and molecular mapping. PhD Thesis, Simon Fraser University, Burnaby, BC, CanadaGoogle Scholar
  11. Clark DV, Baillie DL (1992) Genetic analysis and complementation by germline transformation of lethal mutations in theunc-22(IV) region ofCaenorthabditis elegans. Mol Gen Genet 232:97–105Google Scholar
  12. Coulson A, Sulston J, Brenner S, Kam J (1986) Toward a physical map of the genome of the nematodeCaenorhabditis elegans. Proc Natl Acad Sci USA 83:7821–7825Google Scholar
  13. Croll NA, Slater L, Smith JM (1972)Ancylostoma tubaeforme: osmoregulatory ampulla of larvae. Exp Parasitol 33:356–360Google Scholar
  14. Feinberg A, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13Google Scholar
  15. Ferguson EL, Horvitz HR (1985) Identification and characterization of 22 genes that effect the vulval lineages of the nematodeCaenorhabditis elegans. Genetics 110:17–72Google Scholar
  16. Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol 166:557Google Scholar
  17. Hauser F, Werner H (1992) P-domains as shuffled cysteme-rich modules in integumentary mucin C.1 (FIM-C.1) formXenopus laevis. J Biol Chem 267:24620–24624Google Scholar
  18. Henikoff S (1987) Unidirectional digestion with Exonuclease III in DNA sequence analysis. Methods Enzymol 155:156–165Google Scholar
  19. Jackson I (1991) A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res 19:3795–3798Google Scholar
  20. Kramer JM, French RP, Park E-C, Johnson JJ (1990) TheCaenorhabditis elegans rol-6 gene, which interacts with thesqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 10:2081–2089Google Scholar
  21. Lambie EJ, Kimble J (1991) Two homologous regulatory genes,lin-12 and p-1, have overlapping functions. Development 112:231–240Google Scholar
  22. Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer inC. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970Google Scholar
  23. Moerman DG, Baillie DL (1979) Genetic organization inCaenorhabditis elegans: fine structure analysis of theunc-22 gene. Genetics 91:95–103Google Scholar
  24. Nelson FK, Albert PS, Riddle DL (1984) Functional study of theCaenorhabditis elegans secretory/excretory system using laser microsurgery. J Exp Zool 231:45–56Google Scholar
  25. Okkema PG, White Harrison S, Plunger V, Aryana A, Fire A (1993) Sequence requirements for myosin gene expression and regulation inCaenorhabditis elegans. Genetics 135:385–404Google Scholar
  26. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448Google Scholar
  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  28. Singh SS, Sulston JE (1978) Some observations of moulting inCaenorhabditis elegans. Nematologica 24:63–71Google Scholar
  29. Snutch TP (1984) A molecular and genetic analysis of the heat shock response ofCaenorhabditis elegans. Ph.D. thesis, Simon Fraser University, Burnaby, BC, CanadaGoogle Scholar
  30. Speith J, Booke G, Kuersten S, Lea K, Blumenthal T (1993) Operons inC. elegans: polycistronic mRNA procursors are processed by trans-splicing to downstream coding regions. Cell 73:521–532Google Scholar
  31. Strous GJ, Dekkler J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27:57–92Google Scholar
  32. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematodeCaenorhabditis elegans. Dev Biol 56:110–156Google Scholar
  33. Verma M, Davidson EA (1993) Molecular cloning and sequencing of a canine tracheobronchial mucin cDNA containing a cysteine-rich domain. Proc Natl Acad Sci USA 90:7144–7148Google Scholar
  34. Von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683Google Scholar
  35. Weinstein PP (1952) Regulation of water balance as a function of the excretory system of the filariform larvae ofNippostrongylus muris andAncylostoma canium. Exp Parasitol 1:363–376Google Scholar
  36. Zotter S, Hageman PC, Lossnitzer A, van-den-Tweel J, Hilkens J, Mooi WW, Hilgers J (1988) Monoclonal antibodies to epithelial sialomucins recognize epitopes at different cellular sites in adenolymphomas of the parotid gland. Int J Cancer 3:38–44Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Steven J. M. Jones
    • 1
  • David L. Baillie
    • 1
  1. 1.Institute of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations