Advertisement

Molecular and General Genetics MGG

, Volume 248, Issue 4, pp 471–480 | Cite as

Zeon-1, a member of a new maize retrotransposon family

  • Weiming Hu
  • O. Prem Das
  • Joachim Messing
Original Paper

Abstract

We have previously shown that the tandemly duplicated 27 kDa maize storage protein locus underwent mitotic rearrangement to yield a single-copy allele in isolates of the inbred line A188. This rearrangement contains a new LTR retrotransposon, designatedZeon-1. This middle repetitive element of 7313 by had two long terminal repeats, a primer binding site, a polypurine tract and agag-related open reading frame of 375 amino acids. Transcripts of thegag-related region were detected by the polymerase chain reaction (PCR) in certain maize tissues, and Western blots detected thegag-related protein in the same tissues. Moreover, the product of this mitotic rearrangement was shown to contain the same insertion site and 3′ LTR asZeon-1, suggesting that this rearrangement occurs with unusual precision.Zeon elements were found to be present in teosinte and not present in the Gramineae wheat, barley, sorghum and rye.

Key words

DNA rearrangement LTR retrotransposon Maize Repetitive DNA sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athma P, Peterson T (1991)Ac induces homologous recombination at the maizeP locus. Genetics 128:163–173.Google Scholar
  2. Berg JM (1990) Zinc fingers and other metal-binding domains. J Biol Chem 265:6513–6516.Google Scholar
  3. Bingham PM, Zachar Z (1989) Retrotransposons and the FB transposon fromDrosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 485–502Google Scholar
  4. Boeke JD, Sandmeyer SB (1991) Yeast transposable elements. In: Pringle J, Jones E, Broach J (eds) The molecular and cellular biology of the yeast Saccharomyces: Genome dynamics, protein synthesis, and energetics, vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 193–261Google Scholar
  5. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985)Ty elements transpose through an RNA intermediate. Cell 40:491–500Google Scholar
  6. Breathnach R, Chambon P (1981) Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383Google Scholar
  7. Bureau TE, White SE, Wessler SR (1994) Transduction of a cellular gene by a plant retroelement. Cell 77:479–480Google Scholar
  8. Camirand A, St-Pierre B, Marineau C, Brisson N (1990) Occurrence of acopia-like transposable element in one of the introns of the potato starch phosphorylase gene. Mot Gen Genet 224:33–39Google Scholar
  9. Chalker DL, Sandmeyer SB (1992)Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev 6:117–128Google Scholar
  10. Das OP, Messing J (1987) Allelic variation and differential expression at the 27 kD zein locus in maize. Mol Cell Biol 7: 4490–4497Google Scholar
  11. Das OP, Levi-Minzi S, Koury M, Benner M, Messing J (1990a) A somatic gene rearrangement contributing to genetic diversity in maize. Proc Nail Acad Sci USA 87:7809–7813Google Scholar
  12. Das OP, Cruz-Alvarez M, Chaudhuri S, Messing J (1990b) Molecular methods for genetic analysis of maize. Methods Mol Cell Biol 1:213–222Google Scholar
  13. Das OP, Ward K, Ray S, Messing J (1991) Sequence variation between alleles reveal two types of copy correction at the 27-kDa zein locus of maize. Genomics 11: 849–856Google Scholar
  14. Derr LK, Strathern JN, Garfinkel DJ (1991) RNA-mediated recombination inS. cerevisiae. Cell 67: 355–364Google Scholar
  15. Freund R, Meselson M (1984) Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. Proc Natl Acad Sci USA 81:4462–4464Google Scholar
  16. Geetha KB, Lending CR, Lopes MA, Wallace JC, Larkins BA (1991)opaque-2 modifiers increase γ-zein synthesis and alter its spatial distribution in maize endosperm. Plant Cell 3:1207–1219Google Scholar
  17. Gloor GB, Nassif NA, Johnson-Schlitz DM, Preston CR, Engels WR (1991) Target gene replacement in Drosophila via P element-induced gap repair. Science 253:1110–1117Google Scholar
  18. Grandbastien MA (1992) Retroelements in higher plants. Trends Genet 8:103–108Google Scholar
  19. Grandbastien MA, Spielmann A, Caboche M (1989) Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380Google Scholar
  20. Guarente L, Bermingham-Mcdonogh O (1992) Conservation and evolution of transcriptional mechanisms in eukaryotes. Trends Genet 8:27–32Google Scholar
  21. Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528Google Scholar
  22. Hirochika H, Fukuchi A, Kikuchi F (1992) Retrotransposon families in rice. Mol Gen Genet 233:209–216Google Scholar
  23. Hutchison III CA, Hardies SC, Loeb DD, Shehee WR, Edgell MH (1989) LINEs and related retroposons: long interspersed repeated sequences in eucaryotic genomes. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 593–617Google Scholar
  24. Inouye S, Yuki S, Saigo K (1984) Sequence-specific insertion of theDrosophila transposable element17.6. Nature 310: 332–333Google Scholar
  25. Jin YK, Bennetzen JL (1989) Structure and coding properties ofBs1, a maize retrovirus-like transposon. Proc Natl Acad Sci USA 86:6235–6239Google Scholar
  26. Kriz AL, Boston RS, Larkins BA (1987) Structural and transcriptional analysis of DNA sequences flanking genes that encode 19 kilodalton zeins. Mol Gen Genet 207:90–98Google Scholar
  27. Lee D, Ellis THN, Turner L, Hellens RP, Cleary WG (1990) Acopia-like element inPisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Mol Biol 15:707–722Google Scholar
  28. Manninen I, Schulman AH (1993)BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.) Plant Mol Biol 22: 829–846Google Scholar
  29. McClintock B (1984) The significance of responses of the genome to challenge. Science 226: 792–801Google Scholar
  30. Moore G, Lucas H, Batty N, Flavell R (1991) A family of retrotransposons and associated genomic variation in wheat. Genomics 10:461–468Google Scholar
  31. Mount SM, Rubin GM (1985) Complete nucleotide sequence of theDrosophila transposable element copia: homology betweencopia and retroviral proteins. Mol Cell Biol 7:1630–1638Google Scholar
  32. Or E, Boyer SK, Larkins BA (1993)Opaque2 modifiers act posttranscriptionally and in a polar manner on γ-zein gene expression in maize endosperm. Plant Cell 5:1599–1609Google Scholar
  33. Peschke VM, Phillips RL, Gengenbach BG (1987) Discovery of transposable element activity among progeny of tissue culturederived maize plants. Science 238: 804–807Google Scholar
  34. Peterson GL (1977) A simplification of the protein assay method of Lowry et al., which is more generally applicable. Anal Biochem 83:346–356Google Scholar
  35. Plasterk RHA, Groenen JTM (1992) Targeted alterations of theCaenorhabditis elegans genome by transgene instructed DNA double-strand break repair followingTc1 excision. EMBO J 11:287–290Google Scholar
  36. Pouteau S, Huttner E, Grandbastien MA, Caboche M (1991) Specifie expression of the tobacco Tnt 1 retrotransposon in protoplasts. EMBO J 10:1911–1918Google Scholar
  37. Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehorn EA, Baumeister K, Ivanoff L, Petteway Jr SR, Pearson ML, Lautenberger JA, Papas TS, Ghrayeb J, Chang NT, Gallo RC, Wong-Staal F (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313:227–284Google Scholar
  38. Reina M, Ponte I, Guillen P, Palau J (1990) Sequence analysis of a genomic clone encoding a Zc2 protein fromZea mays W64 A. Nucleic Acids Res 18:6426–6426Google Scholar
  39. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, NYGoogle Scholar
  40. Schwartz DE, Tizard R, Gilbert W (1983) Nucleotide sequence of Rous Sarcoma Virus. Cell 32:853–869Google Scholar
  41. Shepherd NS, Schwarz-Sommer Z, vel Spalve JB, Gupta M, Wienand U, Saedler H (1984) Similarity of theCin1 repetitive family ofZea mays to eukaryotic transposable elements. Nature 307:185–187Google Scholar
  42. Shinnick TM, Lerner RA, Sutcliffe JG (1981) Nucleotide sequence of Moloney murine leukaemia virus. Nature 293:543–548Google Scholar
  43. Shuldiner AR, Depablo F, Moore CA, Roth J (1991) The nonallelicXenopus insulin genes are differentially expressed during neurulation in prepancreatic embryos. Proc Natl Acad Sci USA 88:7679–7683Google Scholar
  44. Smyth DR, Kalitsis P, Joseph JL, Sentry JW (1989) Plant retrotransposon fromLilium henryi is related toTy3 of yeast and the gypsy group ofDrosophila. Proc Natl Acad Sci USA 86:5015–5019Google Scholar
  45. Supplement in Nucleic Acids Research (1987) Nucleic Acids Res 15:9627–10081Google Scholar
  46. Van Huijsduijnen RH, Li XY, Black D, Matthes H, Benoist C, Mathis D (1990) Co-evolution from yeast to mouse: cDNA cloning of the two NFY (CP-1/CBF) subunits. EMBO J 9: 3119–3127Google Scholar
  47. Varagona MJ, Purrgganan M, Wessler SR (1992) Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4:811–820Google Scholar
  48. Varmus HE, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 53–108Google Scholar
  49. Villemur R, Joyce CM, Haas NA, Goddard RH, Kopczak SD, Hussey PJ, Snustad DP (1992) α-tubulin gene family of maize (Zea mays L.) evidence for two ancient α-tubulin genes in plants. J Mol Biol 227:81–96Google Scholar
  50. Voytas DF, Ausubel FM (1988) Acopia-like transposable element family inArabidopsis thaliana. Nature 336:242–244Google Scholar
  51. Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992)Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128Google Scholar
  52. Xiong Y, Eickbush TH (1988) Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55:235–246Google Scholar
  53. Yoshioka K, Kanda H, Akiba H, Enoki M, Shiba T (1991) Identification of an unusual structure in theDrosophila melanogaster transposable elementcopia: evidence forcopia transposition through an RNA intermediate. Gene 103:179–184Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Weiming Hu
    • 1
  • O. Prem Das
    • 1
  • Joachim Messing
    • 1
  1. 1.Waksman InstituteRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations