aequationes mathematicae

, Volume 30, Issue 1, pp 258–280 | Cite as

Hardy fields and existence of transexponential functions

  • Michael Boshernitzan
Research Papers

AMS (1980) subject classification

Primary 26A12 Secondary 26A18, 34A34 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bank, S. B.,On certain canonical products which cannot satisfy algebraic differential equations. Funkcial. Ekvac.23 (1980), 335–349.Google Scholar
  2. [2]
    Bank, S. B.,Some results on hypertranscendental meromorphic functions. Monatsh. Math.90 (1980), 267–289.Google Scholar
  3. [3]
    Boshernitzan, M.,An extension of Hardy's class of “orders of infinity”. J. Analyse Math.39 (1981), 235–255.Google Scholar
  4. [4]
    Boshernitzan, M.,New “orders of infinity”. J. Analyse Math.41 (1982), 130–167.Google Scholar
  5. [5]
    Boshernitzan, M.,“Orders of infinity” generated by difference equations. Amer. J. Math.106 (1984), 1067–1089.Google Scholar
  6. [6]
    Boshernitzan, M.,Discrete “orders of infinity”. Amer. J. Math.106 (1984), 1147–1198.Google Scholar
  7. [7]
    Bourbaki, N.,Fonctions d'une variable réelle. V (Étude Locale des Fonctions), 2nd edition, Hermann, Paris, 1961.Google Scholar
  8. [8]
    Van den Dries, Lou,Bonding the rate of growth of solutions of algebraic differential equations and exponential equations in Hardy fields. Preprint.Google Scholar
  9. [9]
    Hardy, G. H.,Properties of logarithmico-exponential functions. Proc. London Math. Soc.10 (1912), 54–90.Google Scholar
  10. [10]
    Hardy, G. H.,Orders of Infinity. (Cambridge Tracts in Math. and Math. Phys., vol. 12). 2nd edition, Cambridge, 1924.Google Scholar
  11. [11]
    Kneser, H.,Reelle analytische Lösungen der Gleichung ø(ø(x)) = e x. J. Reine Angew Math.187 (1950), 56–57.Google Scholar
  12. [12]
    Kuczma, M.,Functional equations in a single variable. (Monograf. Mat., vol. 46). Polish Sci. Publ., Warsaw, 1968.Google Scholar
  13. [13]
    Rosenlicht, M.,Differential valuations. Pacific J. Math.86 (1980), 301–319.Google Scholar
  14. [14]
    Rosenlicht, M.,Hardy fields. J. Math. Anal. Appl.93 (1983), 297–311.Google Scholar
  15. [15]
    Rosenlicht, M.,The rank of Hardy fields. Trans. Amer. Math. Soc.280 (1983), 659–671.Google Scholar
  16. [16]
    Rosenlicht, M.,Rank change on adjoining real powers to Hardy fields. Trans. Amer. Math. Soc.284 (1984), 829–836.Google Scholar
  17. [17]
    Szekeres, G.,Fractional iteration of exponentially growing functions. J. Austral. Math. Soc.2 (1961/1962), 301–320.Google Scholar
  18. [18]
    Szekeres, G.,Regular iteration of real and complex functions. Acta Math.100 (1958), 203–258Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • Michael Boshernitzan
    • 1
  1. 1.Department of MathematicsRice UniversityHoustonU.S.A.

Personalised recommendations