Advertisement

aequationes mathematicae

, Volume 19, Issue 1, pp 232–244 | Cite as

Tournaments with given regular group

  • L. Babai
  • W. Imrich
Research Papers

AMS (1970) subject classification

Primary 05C25, 05C20 Secondary 20B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alspach, B.,On point-symmetric tournaments. Canad. Math. Bull.13 (1970), 317–323.Google Scholar
  2. [2]
    Babai, L.,Infinite diagraphs with given regular automorphism groups. J. Combinatorial Theory Ser. B, to appear.Google Scholar
  3. [3]
    Babai, L.,Tournaments with given infinite automorphism groups Period. Math. Hungar., to appear.Google Scholar
  4. [4]
    Godsil, C. D.,Neighbourhoods of transitive graphs and GRR's. School of Mathematical Sciences, University of Melbourne, 1977.Google Scholar
  5. [5]
    Hetzel, D.,Über reguläre graphische Darstellung von auflösbaren Gruppen. Diplomarbeit am Fachbereich Mathematik der Technischen Universität Berlin, 1976.Google Scholar
  6. [6]
    Hickmann, J. L. andNeumann, B. H.,A question of Babai on groups. Bull. Austral. Math. Soc.13 (1975), 355–368.Google Scholar
  7. [7]
    Huppert, B.,Endliche Gruppen I. Springer, Berlin, 1967.Google Scholar
  8. [8]
    Imrich, W.,On graphical regular representations of groups. InColl. Math. Soc. J. Bolyai 10, Infinite and finite sets, Keszthely, Hungary 1973. A. Hajnal et al. eds., North Holland, Amsterdam, 1975, pp. 905–925.Google Scholar
  9. [9]
    Imrich, W., andWatkins, M. E.,On automorphism groups of Cayley graphs. Period. Math. Hungar.7 (1976), 243–258.Google Scholar
  10. [10]
    Moon, J. W.,Tournaments with given automorphism group. Canad. J. Math.16 (1964), 485–489.Google Scholar
  11. [11]
    Nowitz, L. A. andWatkins, M. E.,Graphical regular representations on non-abelian groups, I. Canad. J. Math.24 (1972), 993–1008.Google Scholar
  12. [12]
    Sabidussi, G.,On a class of fixed-point free graphs. Proc. Amer. Math. Soc.9 (1958), 800–804.Google Scholar
  13. [13]
    Watkins, M. E.,On the action of non-abelian groups on graphs. J. Combinatorial Theory Ser. B.11 (1971), 95–104.Google Scholar
  14. [14]
    Watkins, M. E.,Graphical regular representations of free products of groups. J. Combinatorial Theory. Ser. B.21 (1976), 47–56.Google Scholar

Copyright information

© Birkhäuser Verlag 1979

Authors and Affiliations

  • L. Babai
    • 1
    • 2
  • W. Imrich
    • 1
    • 2
  1. 1.Department of Algebra & Number TheoryEötvös Lorand UniversityBudapestHungary
  2. 2.Institut für Angewandte Mathematik, MontanuniversitätLeobenAustria

Personalised recommendations