Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the simultaneous associativity ofF(x, y) andx+yF(x, y)

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Aczél, J.,Lectures on functional equations and their applications. Academic Press, New York, 1966.

  2. [2]

    Frank, M. J.,Associativity in a class of operations on spaces of distribution functions. Aequationes Math.12 (1975), 121–144.

  3. [3]

    Kimberling, C.,On a class of associative functions. Publ. Math. Debrecen20 (1973), 21–39.

  4. [4]

    Ling, C.-H.,Representation of associative functions. Publ. Math. Debrecen12 (1965), 189–212.

  5. [5]

    Mostert, P. S. andShields, A. L.,On the structure of semi-groups on a compact manifold with boundary. Ann. Math.65 (1957), 117–143.

  6. [6]

    Moynhan, R.,On the class of τ T semigroups of probability distribution functions II. Aequationes Math.17 (1978), 19–40.

  7. [7]

    Paalman-de Miranda, A. B.,Topological semigroups. InMathematical centre tracts, No. 11, Mathematisch Centrum Amsterdam, 1964.

  8. [8]

    Schweizer, B. andSklar, A.,Associative functions and statistical triangle inequalities. Publ. Math. Debrecen8 (1961), 169–186.

  9. [9]

    Schweizer, B. andSklar, A.,Associative functions and abstract semigroups. Publ. Math. Debrecen10 (1963), 69–81.

  10. [10]

    Schweizer, B. andSklar, A.,Operations on distribution functions not derivable from operations on random variables, Studia Math.52 (1974), 43–52.

  11. [11]

    Sklar, A.,Problem (P126). Aequationes Math.11 (1974), 312–313.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frank, M.J. On the simultaneous associativity ofF(x, y) andx+yF(x, y). Aeq. Math. 19, 194–226 (1979). https://doi.org/10.1007/BF02189866

Download citation

AMS (1970) subject classification

  • Primary 39A30
  • Secondary 22A15, 60E05