Advertisement

International Journal of Biometeorology

, Volume 29, Issue 3, pp 285–292 | Cite as

Air ion effect on respiration and photosynthesis of barley andAntirrhinum majus

  • T. M. Elkiey
  • S. Bhartendu
  • N. Barthakur
Basic Comments on the Physics, Occurrence in the Atmosphere, and Possible Biological Effects of Air Ions

Abstract

Stem height increases of 13% and 15% for barley and snapdragon respectively were observed for plants maintained in an atmosphere of high concentrations of negative air ions compared to control plants. Dry weights of the exposed plant species to negative ions increased by approximately 18% compared to untreated plants. The effects of positive air ions were insignificant. The rates of photosynthesis and respiration measurements on continuously exposed plants to negative air ions conformed to these observations.

Keywords

Atmosphere Plant Species Respiration Plant Physiology Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BHARTENDU, S., and MENON, I. A. (1978)b; Effects of atmospheric small negative ions on the oxygen consumption of mouse liver cells. Int. J. Biometeor., 22: 43–52.Google Scholar
  2. ELKIEY, M. T., PELLETIER, L. R., BHARTENDU, S. and BARTHAKUR, N. (1977): Effects of small air ions on net blotch disease of barley. Int. J. Biometeor., 21: 1–6.Google Scholar
  3. KOTAKA, S. and KRUEGER, A. P. (1967): Studies on the air-ion-induced growth increase in higher plants. Advancing frontiers of plant sciences 20: 115–208.Google Scholar
  4. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, C. P. (1962): Studies on the effects of gaseous ions on plant growth. J. Gen. Physiol. 45: 879–895.Google Scholar
  5. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, C. P. (1963a): Gaseous-ion-induced stimulation of cytochrome c biosynthesis. Nature 200: 707–708.Google Scholar
  6. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, C. P. (1963b): A study of the mechanism of air-ion-induced growth stimulation inHordeum vulgaris. Int. J. Biometeor. 7: 17–25.Google Scholar
  7. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, C. P. (1964a): Studies on air-ion-enhanced iron chlorosis I. Active and residual iron. Int. J. Biometeor. 8: 5–16.Google Scholar
  8. KRUEGER, A. P., KOTAKA, S. and ANDRIESE, C. P. (1964b): The effect of air containing O2, O2+, CO2 and CO2+ on the growth of seedlings ofHordeum vulgaris. Int. J. Biometeor. 8: 17–25.Google Scholar
  9. SAXER, L. and SIGRIST, W. (1966): Die luftelektrische Station in Aarau, Schweiz. Mittl. Aargau. Naturforsch. Gesell. 27: 187–224.Google Scholar
  10. UMBREIT, W. W., BURRIS, H. R. and STAUFFER, F. J. (1964): Manometric Techniques, Burgess Publishing Co., Minneapolis.Google Scholar
  11. WACHTER, L. S. and WIDMER, E. R. (1976): The effects of negative air ions on plant growth. Hort Science 11: 576–578.Google Scholar

Copyright information

© Swets & Zeitlinger 1985

Authors and Affiliations

  • T. M. Elkiey
    • 1
  • S. Bhartendu
    • 2
  • N. Barthakur
    • 3
  1. 1.Department of Horticultural ScienceUniversity of AlexandriaEgypt
  2. 2.Atmospheric Environment ServiceTorontoCanada
  3. 3.Department of Agricultural Chemistry & PhysicsMacdonald Campus of McGill UniversityQuebecCanada

Personalised recommendations