aequationes mathematicae

, Volume 28, Issue 1, pp 35–49

On orthogonally additive mappings

  • Jürg Rätz
Research Paper

AMS (1970) subject classification

Primary 39A40, 46C10, 46B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aczél, J.,Lectures on functional equations and their applications. Academic Press, New York, 1966.Google Scholar
  2. [2]
    Aczél, J., Baker, J. A., Djoković, D. Ž., Kannappan, Pl. andRadó, F.,Extensions of certain homomorphisms of subsemigroups to homomorphisms of groups. Aequationes Math.6 (1971), 263–271.Google Scholar
  3. [3]
    Berberian, S. K.,Introduction to Hilbert space. Oxford University Press, New YOrk, 1961.Google Scholar
  4. [4]
    Day, M. M.,Some characterizations of inner-product spaces. Trans. Amer. Math. Soc.62 (1947), 320–337.Google Scholar
  5. [5]
    Dhombres, J.,Some aspects of functional equations. Chulalongkorn University Press, Bangkok, 1979.Google Scholar
  6. [6]
    Ger, R.,Conditional Cauchy equation stemming from ideal gas theory. InProceedings of the Nineteenth International Symposium on Functional Equations, University of Waterloo, 1981, p. 22.Google Scholar
  7. [7]
    Gudder, S. andStrawther, D.,Orthogonally additive and orthogonally increasing functions on vector spaces. Pacific J. Math.58 (1975), 427–436.Google Scholar
  8. [8]
    Gudder, S. andStrawther, D.,A converse of Pythagoras' theorem. Amer. Math. Monthly84 (1977), 551–553.Google Scholar
  9. [9]
    James, R. C.,Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc.61 (1947), 265–292.Google Scholar
  10. [10]
    James, R. C.,Inner products in normed linear spaces. Bull. Amer. Math. Soc.53 (1947), 559–566.Google Scholar
  11. [11]
    Lawrence, J.,Orthogonality and additive functions on normed linear spaces. To appear in Colloq. Math.Google Scholar
  12. [12]
    Minty, G. J.,Monotone (nonlinear) operators in Hilbert space. Duke Math. J.29 (1962), 341–346.Google Scholar
  13. [13]
    Pinsker, A.,Sur une fonctionnelle dans l'espace de Hilbert. C. R. Acad. Sci. URSS N. S.20 (1938), 411–414.Google Scholar
  14. [14]
    Rätz, J.,On orthogonally additive mappings. InProceedings of the Eighteenth International Symposium on Functional Equations, University of Waterloo, 1980, pp. 22–23.Google Scholar
  15. [15]
    Rätz, J.,On orthogonally additive mappings, II. InProceedings of the Nineteenth International Symposium on Functional Equations, University of Waterloo, 1981, pp. 38–39.Google Scholar
  16. [16]
    Roberts, A. W. andVarberg, D. E.,Convex functions. Academic Press, New York, 1973.Google Scholar
  17. [17]
    Sundaresan, K.,Orthogonality and nonlinear functionals on Banach spaces. Proc. Amer. Math. Soc.34 (1972), 187–190.Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • Jürg Rätz
    • 1
  1. 1.Mathematisches Institut, der Universität BernBernSwitzerland

Personalised recommendations