Discrete & Computational Geometry

, Volume 9, Issue 3, pp 323–333 | Cite as

The steiner minimal network for convex configurations

  • D. A. Thomas
  • J. H. Rubinstein
  • T. Cole


SupposeX is a convex configuration with radius of maximum curvaturer and at most one of the edges joining neighboring points has length strictly greater thanr. We use the variational approach to show the Steiner treeS coincides with the minimal spanning tree and consists of all these edges with a longest edge removed. This generalizes Graham's problem for points on a circle, which we had solved. In addition we describe the minimal spanning tree for certain convex configurations.


Span Tree Minimal Span Tree Discrete Comput Geom Steiner Tree Maximum Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. R. Garey, R. L. Graham, and D. S. Johnson, The Complexity of Computing Steiner Minimal Trees,SIAM J. Appl. Math. 32 (1977), 835–859.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. L. Graham, Some Results on Steiner Minimal Trees, Unpublished manuscript, 11 May 1967.Google Scholar
  3. 3.
    Z. A. Melzak, On the Problem of Steiner,Canad. Math. Bull. 4 (1961), 143–148.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. H. Rubinstein and D. A. Thomas, A Variational Approach to the Steiner Network Problem,Ann. Oper. Res. 33 (1991), 481–499.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. H. Rubinstein and D. A. Thomas, The Steiner Ratio Conjecture for Six Points,J. Combin. Theory Ser. A 58 (1991), 54–77.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. H. Rubinstein and D. A. Thomas, The Steiner Ratio Conjecture for Cocircular Points,Discrete Comput. Geom. 7 (1992), 77–86.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. H. Rubinstein and D. A. Thomas, Graham's Problem on Shortest Networks for Points on a Circle,Algorithmica 7 (1992), 193–218.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • D. A. Thomas
    • 1
  • J. H. Rubinstein
    • 1
  • T. Cole
    • 1
  1. 1.Mathematics DepartmentMelbourne UniversityParkvilleAustralia

Personalised recommendations