Advertisement

Discrete & Computational Geometry

, Volume 9, Issue 3, pp 257–266 | Cite as

An equipartition of planar sets

  • Leonard J. Schulman
Article

Abstract

We describe the “cobweb” partition scheme and show that it can split any planar set into eight regions of equal area.

Keywords

Fundamental Group Discrete Comput Geom Partition Scheme Parametrizing Interval Respective Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Adams and V. Guillemin.Measure Theory and Probability, Wadsworth, Monterey, CA, 1986.zbMATHGoogle Scholar
  2. 2.
    B. Aronov, P. Erdös, W. Goddard, D. J. Kleitman, M. Klugerman, J. Pach, and L. J. Schulman. Crossing families. InProc. Seventh ACM Symp. on Computational Geometry, pp. 351–356, 1991.Google Scholar
  3. 3.
    R. C. Buck and E. F. Buck. Equartition of convex sets.Math. Mag., 22:195–198, 1987.MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Courant and H. Robbins.What is Mathematics, pp. 317–319. Oxford University Press, Oxford, 1941.Google Scholar
  5. 5.
    H. Edelsbrunner and F. Huber. Dissecting Sets of Points in Two and Three Dimensions. Technical Report F138, Technische Universitat Graz, 1984.Google Scholar
  6. 6.
    J. Matoušek. Efficient partition trees. InProc. Seventh ACM Symp. on Computational Geometry, pp. 1–9, 1991.Google Scholar
  7. 7.
    J. R. Munkres.Topology: A First Course. Prentice-Hall, Englewood Cliffs, NJ, 1975.zbMATHGoogle Scholar
  8. 8.
    W. Rudin.Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York, 1976.zbMATHGoogle Scholar
  9. 9.
    R. M. Switzer.Algebraic Topology—Homotopy and Homology. Springer-Verlag, Berlin, 1975.CrossRefzbMATHGoogle Scholar
  10. 10.
    D. E. Willard. Polygon retrieval.SIAM J. Comput., 11(1):149–165, February 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. C. Yao and F. F. Yao. A general approach tod-dimensional geometric queries. InProc. 17th Symp. on Theory of Computing, pp. 163–169, 1985.Google Scholar
  12. 12.
    F. F. Yao. Computational geometry. In J. van Leeuwen, ed.,Handbook of Theoretical Computer Science, Volume A, Chapter 7. Elsevier, Amsterdam, 1990.Google Scholar
  13. 13.
    F. F. Yao, D. P. Dobkin, H. Edelsbrunner, and M. S. Paterson. Partitioning space for range queries.SIAM J. Comput., 18(2):371–384, April 1989.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Leonard J. Schulman
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations