Advertisement

Discrete & Computational Geometry

, Volume 9, Issue 1, pp 11–38 | Cite as

Applications of a new space-partitioning technique

  • Pankaj K. Agarwal
  • Micha Sharir
Article

Abstract

We present several applications of a recent space-partitioning technique of Chazelle, Sharir, and Welzl (Proceedings of the 6th Annual ACM Symposium on Computational Geometry, 1990, pp. 23–33). Our results include efficient algorithms for output-sensitive hidden surface removal, for ray shooting in two and three dimensions, and for constructing spanning trees with low stabbing number.

Keywords

Span Tree Range Query Query Time Partition Tree Double Wedge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    P. K. Agarwal, Ray shooting and other applications of spanning trees with low stabbing number,SIAM J. Comput. 21 (1992), in press.Google Scholar
  2. [2]
    P. K. Agarwal, Partitioning arrangements of lines, I: An efficient deterministic algorithm,Discrete Comput. Geom. 5 (1990), 449–483.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. K. Agarwal, Partitioning arrangements of lines, II: Applications,Discrete Comput. Geom. 5 (1990), 533–573.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. K. Agarwal, M. van Kreveld, and M. Overmars, Searching and storing curved objects,Proc. 7th ACM Symp. on Computational Geometry, 1991, pp. 41–50. (Also to appear inJ. Algorithms.)Google Scholar
  5. [5]
    P. K. Agarwal and J. Matoušek, Ray shooting and parametric search,Proc. 24th ACM Symp. on Theory of Computing, 1992.Google Scholar
  6. [6]
    P. K. Agarwal and J. Matoušek, Range searching with non-linear objects, in preparation, 1991.Google Scholar
  7. [7]
    B. Aronov and M. Sharir, On the zone of a surface in a hyperplane arrangement,Proc. 2nd Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, Vol. 519, Springer-Verlag, Berlin, 1991, pp. 13–19.CrossRefGoogle Scholar
  8. [8]
    R. Bar Yehuda and S. Fogel, Good splitters with applications to ray shooting,Proc. 2nd Canadian Conf. on Computational Geometry, 1990, pp. 81–85. (Also to appear inAlgorithmica.)Google Scholar
  9. [9]
    J. Bentley and J. Saxe, Decomposable searching problems, I: Static-to-dynamic transformation,J. Algorithms,1 (1980), 301–358.MathSciNetCrossRefGoogle Scholar
  10. [10]
    M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld, Efficient ray shooting and hidden surface removal,Proc. 7th Symp. on Computational Geometry, 1991, pp. 21–30.Google Scholar
  11. [11]
    B. Chazelle, An optimal computing convex hull algorithm and new results on cuttings,Proc. 32nd IEEE Symp. on Foundations of Computer Science, 1991, pp. 29–38.Google Scholar
  12. [12]
    B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink Ray shooting in polygons using geodesic triangulations,Proc. 18th International Colloquium on Automata, Languages, and Programming, 1991, pp. 661–673.Google Scholar
  13. [13]
    B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly-exponential stratification scheme for real semi-algebraic varieties and its applications,Proc. 16th International Colloquium on Automata, Languages and Programming, 1989, pp. 179–192.Google Scholar
  14. [14]
    B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Stolfi, Lines in space: Combinatorics and algorithms, Technical Report 491, Dept. of Computer Science, New York University, February 1990.Google Scholar
  15. [15]
    B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry,Discrete Comput. Geom. 4 (1989), 551–589.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range searching and new zone theorems,Proc. 6th ACM Symp. on Computational Geometry, 1990, pp. 23–33.Google Scholar
  17. [17]
    B. Chazelle and E. Welzl, Quasi-optimal range searching in spaces of finite Vapnik-Chervonenkis dimensions,Discrete Comput. Geom. 4 (1989), 467–489.MathSciNetCrossRefGoogle Scholar
  18. [18]
    S. W. Cheng and R. Janardan, New results on dynamic planar point location,Proc. 31st IEEE Symp. on Foundations of Computer Science, 1990, pp. 96–105.Google Scholar
  19. [19]
    S. W. Cheng and R. Janardan, Space efficient ray shooting and intersection searching: Algorithms, dynamization, and applications,Proc. 2nd SIAM-ACM Symp. on Discrete Algorithms, 1991, pp. 7–16.Google Scholar
  20. [20]
    K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres,Discrete Comput. Geom. 5 (1990), 99–160.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    R. Cole and M. Sharir, Visibility problems for polyhedral terrains,J. Symbolic Comput. 7 (1989), 11–30.MathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Dobkin and H. Edelsbrunner, Space searching for intersecting objects,J. Algorithms 8 (1987), 348–361.MathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Dobkin and D. Kirkpatrick, A linear algorithm for determining the separation of convex polyhedra,J. Algorithms 6 (1985), 381–392.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Dobkin and D. Kirkpatrick, Determining the separation of preprocessed polyhedra: a unified approach,Proc. 17th International Colloquium on Automata, Languages, and Programming, 1990, pp. 400–413.Google Scholar
  25. [25]
    H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl, Implicitly representing arrangements of lines and of segments,Discrete Comput. Geom. 4 (1989), 433–466.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    L. Guibas, M. Overmars, and M. Sharir, Ray shooting, implicit point location, and related queries in arrangements of segments, Technical Report 433, Courant Institute, New York University, 1989.Google Scholar
  27. [27]
    J. Matoušek, More on cutting hyperplanes and spanning trees with low crossing number, Technical Report B-90-2, Freie Universität Berlin, 1990.Google Scholar
  28. [28]
    J. Matoušek, Spanning trees with low crossing numbers,Inform. Théoret. Applic. 25 (1991), 103–123.zbMATHGoogle Scholar
  29. [29]
    J. Matoušek, Approximations and optimal geometric divide-and-conquer,Proc. 23rd ACM Symp. on Theory of Computing, 1991, 506–511.Google Scholar
  30. [30]
    J. Matoušek, Efficient partition trees,Proc. 7th ACM Symp. on Computational Geometry, 1991, pp. 1–9.Google Scholar
  31. [31]
    J. Matoušek, Range searching with efficient hierarchical cuttings,Proc. 8th ACM Symp. on Computational Geometry, 1992, to appear.Google Scholar
  32. [32]
    K. Mehlhorn,Data Structures and Algorithms, 3: Multi-Dimensional Searching and Computational Geometry, Springer-Verlag, Berlin, 1984.CrossRefzbMATHGoogle Scholar
  33. [33]
    M. Overmars and J. van Leeuwen, Maintenance of configurations in the plane,J. Comput. System Sci. 23 (1981), 166–204.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Overmars and J. van Leeuwen, Worst-case optimal insertion and deletion methods for decomposable searching,Inform. Process. Lett. 12 (1981), 168–173.CrossRefzbMATHGoogle Scholar
  35. [35]
    M. Overmars, H. Schipper, and M. Sharir, Storing line segments in partition trees,BIT 30 (1990), 385–403.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Overmars and M. Sharir, Output-sensitive hidden surface removal,Proc. 30th IEEE Symp. on Foundations of Computer Science, 1989, pp. 598–603.Google Scholar
  37. [37]
    M. Overmars and M. Sharir, An improved technique for output-sensitive hidden surface removal, Technical Report RUU-CS-89-32, Computer Science Department, University of Utrecht, December 1989. (To appear inAlgorithmica.)Google Scholar
  38. [38]
    M. Overmars and M. Sharir, Merging visibility maps,Comput. Geom. Theory Applic. 1 (1991), 35–50.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    M. Pellegrini, Combinatorial and algorithmic analysis of stabbing and visibility problems in 3-dimensional space, Ph.D. Thesis, New York University, 1991.Google Scholar
  40. [40]
    A. Schmitt, H. Müller, and W. Leister, Ray tracing algorithms—theory and algorithms, inTheoretical Foundations of Computer Graphics and CAD (ed. R. Earnshaw), NATO Series, Springer-Verlag, Berlin, 1988, pp. 997–1030.CrossRefGoogle Scholar
  41. [41]
    M. Sharir and M. Overmars, A simple output-sensitive hidden surface removal algorithm,ACM Trans. Graphics 11 (1992), 1–11.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D. M. H. Sommerville,Analytical Geometry in Three Dimensions, Cambridge University Press, Cambridge, 1951.Google Scholar
  43. [43]
    J. Stolfi, Primitives for computational geometry, Ph.D. Thesis, Stanford University, 1989.Google Scholar
  44. [44]
    E. Welzl, Partition trees for triangle counting and other range searching problems,Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 23–33.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Pankaj K. Agarwal
    • 1
  • Micha Sharir
    • 2
    • 3
  1. 1.Computer Science DepartmentDuke UniversityDurhamUSA
  2. 2.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations