, Volume 8, Issue 4, pp 323–332 | Cite as

Some Ramsey-Turán type results for hypergraphs

  • P. Frankl
  • V. Rödl


To everyk-graphG letπ(G) be the minimal real numberπ such that for everyε>0 andn>n0(ε,G) everyk-graphH withn vertices and more than (π+ε) (\(\left( {\pi + \varepsilon } \right)\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)\)) edges contains a copy ofG. The real numberϱ (G) is defined in the same way adding the constraint that all independent sets of vertices inH have sizeo(n). Answering a problem of Erdős and Sós it is shown that there exist infinitely manyk-graphs with 0<ϱ(G)<π(G) for everyk≧3. It is worth noting that we were unable to find a singleG with the above property.

AMS subject classification code (1980)

05 C 55 05 C 65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Bollobás,Extremal Graph Theory, Academic Press, New York, 1978.Google Scholar
  2. [2]
    B.Bollobás,Combinatorics, Cambridge University Press, 1986.Google Scholar
  3. [3]
    B. Bollobás andP. Erdős, On a Ramsey-Turán type problem,J. Combinatorial Th. B 21 (1976), 166–168.CrossRefGoogle Scholar
  4. [4]
    P. Erdős, On extremal problems of graphs and generalized graphs,Israel J. Math. 2 (1964), 183–190.Google Scholar
  5. [5]
    P.Erdős, Extremal problems for graphs and hypergraphs: similarities and differences,to appear.Google Scholar
  6. [6]
    P. Erdős andA. Hajnal, On chromatic number of graphs and set systems,Acta Math. Acad. Sci. Hungar. 17 (1966), 61–99.CrossRefGoogle Scholar
  7. [7]
    P. Erdős, A. Hajnal, V. T. Sós andE. Szemerédi, More results on Ramsey-Turán type problems,Combinatorica,3 (1983), 69–81.Google Scholar
  8. [8]
    P. Erdős andV. T. Sós, On Ramsey-Turán type Theorems for Hypergraphs,Combinatorica 2 (1982), 289–295.Google Scholar
  9. [9]
    P. Erdős, M. Simonovits, Compactness results in extremal graph theory,Combinatorica 2 (1982), 275–288.Google Scholar
  10. [10]
    P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs,Combinatorica 3 (1983), 181–192.Google Scholar
  11. [11]
    P.Frank and Z.Füredi, Exact solution of some Turán-type problems,J. Combinatorial Th. A, submitted.Google Scholar
  12. [12]
    P. Frankl andZ. Füredi, A new generalization of the Erdős—Ko-Rado theorem,Combinatorica,3 (1983), 341–349.Google Scholar
  13. [13]
    P. Frankl andZ. Füredi, An exact result for 3-graphs,Discrete Math. 50 (1984), 323–328.CrossRefGoogle Scholar
  14. [14]
    P. Frankl, V. Rödl, Hypergraphs do not jump,Combinatorica,4 (1984), 149–159.Google Scholar
  15. [15]
    Z.Füredi,Personal communication, 1983.Google Scholar
  16. [16]
    G. Katona, T. Nemetz andM. Simonovits, On a graph problem of Turán, (in Hungarian)Mat. Lapok 15 (1964), 228–238.Google Scholar
  17. [17]
    V.Rödl, On universality of graphs with uniformly distributed edges,Discrete Math. (1986).Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • P. Frankl
    • 1
  • V. Rödl
    • 2
  1. 1.CNRSParisFrance
  2. 2.FJFI, ČVUTPragueCzechoslovakia

Personalised recommendations