International Journal of Biometeorology

, Volume 31, Issue 3, pp 259–265 | Cite as

Effects of meteorological factors on defensive behaviour of honey bees

  • E. E. Southwick
  • R. F. A. Moritz


The defensive behaviour of honey bee colonies (Apis mellifera L.) was quantitated in the field throughout a three month season by the use of a standardized test in which numbers of stings in a leather target were counted after single colonies were opened and exposed to alarm pheromone. The main results show how the defensive behaviour of honey bees is highly dependent on weather factors. Eliminating genetic variance, the following meteorological variables account for 92.4% of the variation in defensive behaviour: air temperature, solar radiation intensity, wind velocity, relative humidity, and barometric pressure.


Genetic Variance Relative Humidity Plant Physiology Solar Radiation Wind Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BRANDEBURGO, M. M., GONCALVES, L. S., KERR, W. E. (1982): Effects of Brazilian climatic conditions upon the aggressiveness of Africanized colonies of honeybees. In: P. Jaisson (ed.). Social Insects in the Tropics. Presse de l'Universite Paris Nord, Vol. 1, pp. 256–280.Google Scholar
  2. COLLINS, A. M. (1979): Genetics of the response of the honeybee to an alarm chemical, isopentyl acetate. J. Apic. Res. 18: 285–291.Google Scholar
  3. COLLINS, A. M. (1981): Effects of temperature and humidity on honeybees response to alarm pheromones. J. Apic. Res. 20: 13–18.Google Scholar
  4. COLLINS, A. M. and RINDERER, T. E. (1985): Effect of empty comb on the defensive behaviour of honeybees. J. Chem. Ecol. 11: 333–338.Google Scholar
  5. COLLINS, A. M. and ROTHENBUHLER, W. C. (1978): Laboratory test of the response to an alarm chemical, isopentyl acetate, byApis mellifera. Ann. Entomol. Soc. Amer. 71: 906–909.Google Scholar
  6. COLLINS, A. M., RINDERER, T. E., HARBO, J. R., and BROWN, M. A. (1984): Heritabilities and correlations for several characteristics in the honey bee. J. Heredity 75: 135–140.Google Scholar
  7. DRUM, N. H. and ROTHENBUHLER, W. C. (1984): Effect of temperature on nonstinging aggressive responses of worker honeybees to diseased and healthy bees. J. Apic. Res. 23: 82–87.Google Scholar
  8. FREE, J. B. (1961): The stimuli releasing the stinging response in honeybees. Anim. Behav. 9: 193–196.Google Scholar
  9. KOENIGER, N. (1979): Differences in optical releasers of attack flight betweenApis mellifera carnica andApis mellifera adansonii. P.56 In: V. Harnaj (ed.). Apiculture in Hot Climates, Apimondia, Bucharest.Google Scholar
  10. MASCHWITZ, U. W. (1963): Gefahrenalarmstoffe und Gefahrenalarmierung bei sozialen Hymenopteren. Z. vergl. Physiol. 47: 596–655.Google Scholar
  11. MICHENER, C. D. (1972): Report of the Committee on the African Honey Bee. NTIS, Springfield, VA, pp. 8–92.Google Scholar
  12. MICHENER, C. D. (1975): The Brazilian bee problem. Ann. Rev. Entomol. 20: 399–416.Google Scholar
  13. MORITZ, R. F. A. (1983): Homogeneous mixing of honeybee semen by centrifugation. J. Apic. Res. 22: 249–255.Google Scholar
  14. MORITZ, R. F. A., SOUTHWICK, E. E., and BREH, M. (1985): Quantitative analysis of defensive behavior in honey bees (Apis mellifera, L.) J. Exp. Zool. 235: 1–5.Google Scholar
  15. MORITZ, R. F. A., SOUTHWICK, E. E., and HARBO, J. R. (1986a): Using a metabolic bioassay to determine maternal and preeclosional effects on alarm behavior in honey bees (Apis mellifera, L.). (submitted).Google Scholar
  16. MORITZ, R. F. A., SOUTHWICK, E. E., and HARBO, J. R. (1986b): Genetic analysis of defensive behavior in honey bee colonies (Apis mellifera, L.) in a field test. Apidologie (in press).Google Scholar
  17. RINDERER, T. E. (1982): Behavior genetics of defensive behavior of honeybees. In: P. Jaisson (ed.), Social Insects in the Tropics. Presse de l'Universite Paris Nord, Vol.1, pp. 259–254.Google Scholar
  18. ROTHENBUHLER, W. C. (1960): A technique for studying genetics of colony behaviour in honey bees. AM. Bee J. 100: 176–198.Google Scholar
  19. ROTHENBUHLER, W. C. (1974): Further analysis of Committee's data on the Brazilian bee. Amer. Bee J. 114: 128.Google Scholar
  20. SCHUA, L. (1952): Untersuchungen über den Einfluss meteorologischer Elemente auf das Verhalten der Honigbiene. Z. vergl. Physiol. 34: 258–277.Google Scholar
  21. SOUTHWICK, E. E. and MORTIZ, R. F. A. (1985): Metabolic response to alarm pheromone in honey bees. J. Insect Physiol. 31: 389–392.Google Scholar
  22. TAYLOR, O. R. (1977): The past and future spread of Africanized bees in the Americas. Bee World 58: 19–30.Google Scholar
  23. TAYLOR, O. R., JR., and SPIVAK, M. (1984): Climatic limits of tropical African honeybees in the Americas. Bee World 65: 38–47.Google Scholar
  24. VILLA, J. D. (1985). Comparative behaviour and performance of African and European derived honey bees at different elevations in northern South America. Masters Dissertation, Dept. Entomol., Univ. Kansas.Google Scholar
  25. WINSTON, M. L. (1977): The establishment and spread of the Africanized honey bee in the Western Hemisphere. J. Zpic. Soc. Trinidad, Tabago 77: 303–313.Google Scholar

Copyright information

© Swets & Zeitlinger 1987

Authors and Affiliations

  • E. E. Southwick
    • 1
  • R. F. A. Moritz
    • 2
  1. 1.Department of Biological SciencesState University of New York, College at BrockportNew YorkUSA
  2. 2.Bayerische Landesantalt für BienenzuchtErlangenGermany

Personalised recommendations