Journal of Statistical Physics

, Volume 76, Issue 1–2, pp 125–157 | Cite as

Molecule formation and the Farey tree in the one-dimensional Falicov-Kimball model

  • C. Gruber
  • D. Ueltschi
  • J. Jędrzejewski


The ground-state configurations of the one-dimensional Falicov-Kimball model are studied exactly with numerical calculations revealing unexpected effects for small interaction strength. In neutral systems we observe molecular formation, phase separation, and changes in the conducting properties; while in nonneutral systems the phase diagram exhibits Farey tree order (Aubry sequence) and a devil's staircase structure. Conjectures are presented for the boundary of the segregated domain and the general structure of the ground states.

Key Words

Falicov-Kimball model ground states phase diagram phase separations molecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Falicov and J. C. Kimball,Phys. Rev. Lett. 22:997 (1969).CrossRefGoogle Scholar
  2. 2.
    D. I. Khomskii, inQuantum Theory of Solids, I. M. Lifshits, ed. (Mir, Moscow, 1982).Google Scholar
  3. 3.
    T. Kennedy and E. H. Lieb,Physica A 138:320 (1986).Google Scholar
  4. 4.
    U. Brandt and R. Schmidt,Z. Phys. B 63:45 (1986).CrossRefGoogle Scholar
  5. 5.
    J. Jędrzejewski, J. Lach, and R. Lyżwa,Physica A 154:529 (1989).Google Scholar
  6. 6.
    J. K. Freericks and L. M. Falicov,Phys. Rev. B 41:2163 (1990).CrossRefGoogle Scholar
  7. 7.
    U. Brandt and R. Schmidt,Z. Phys. B 67:43 (1987).CrossRefGoogle Scholar
  8. 8.
    Ch. Gruber, J. Iwański, J. Jędrzejweski, and P. Lemberger,Phys. Rev. B 41: 2198 (1990).CrossRefGoogle Scholar
  9. 9.
    J. L. Lebowitz and N. Macris, preprint, Ecole Polytechnique Fédérale de Lausanne.Google Scholar
  10. 10.
    A. Messager and S. Miracle-Sole, preprint, Marseille University.Google Scholar
  11. 11.
    Ch. Gruber,Helv. Phys. Acta 64:668 (1991).Google Scholar
  12. 12.
    P. Lemberger,J. Phys. A 25:715 (1992).Google Scholar
  13. 13.
    U. Brandt,J. Low Temp. Phys. 84:477 (1991).CrossRefGoogle Scholar
  14. 14.
    M. Barma and V. Subrahmanyam,Phase Trans. B 16:303 (1989).Google Scholar
  15. 15.
    Ch. Gruber, J. Jędrzejewski, and P. Lemberger,J. Stat. Phys. 66:913 (1992).CrossRefGoogle Scholar
  16. 16.
    Ch. Gruber, J. L. Lebowitz, and N. Macris,Europhys. Lett. 21:389 (1993);Phys. Rev. B 48:4312 (1993).Google Scholar
  17. 17.
    T. Kennedy, The state of matter,Adv. Ser. in Math. Phys. 20:42 (1994).Google Scholar
  18. 18.
    J. Lach, R. Lyżwa, and J. Jędrzejewski,Phys. Rev. B 48:10783 (1993);Acta Phys. Polon. A 84:327 (1993).CrossRefGoogle Scholar
  19. 19.
    R. Lyżwa,Phys. Lett. A 164:323 (1992);Physica A 192:231 (1993).CrossRefGoogle Scholar
  20. 20.
    J. Hubbard,Phys. Rev. B 17:494 (1978).CrossRefGoogle Scholar
  21. 21.
    E. H. Lieb, private communication.Google Scholar
  22. 22.
    S. Aubry,J. Phys. Lett. (Paris)44:L-247 (1983).Google Scholar
  23. 23.
    R. Bruinsma and P. Bak,Phys. Rev. B 27:5824 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • C. Gruber
    • 1
  • D. Ueltschi
    • 1
  • J. Jędrzejewski
    • 2
  1. 1.Institut de Physique ThéoriqueEcole Polytechnique Fédérale de Lausanne, PHB-EcublensLausanneSwitzerland
  2. 2.Institute of Theoretical PhysicsUniversity of WrocławWrocłwPoland

Personalised recommendations