Journal of Statistical Physics

, Volume 76, Issue 1–2, pp 3–89 | Cite as

Generalized Hartree-Fock theory and the Hubbard model

  • Volker Bach
  • Elliott H. Lieb
  • Jan Philip Solovej


The familiar unrestricted Hartree-Fock variational principles is generalized to include quasi-free states. As we show, these are in one-to-one correspondence with the one-particle density matrices and these, in turn, provide a convenient formulation of a generalized Hartree-Fock variational principle, which includes the BCS theory as a special case. While this generalization is not new, it is not well known and we begin by elucidating it. The Hubbard model, with its particle-hole symmetry, is well suited to exploring this theory because BCS states for the attractive model turn into usual HF states for the repulsive model. We rigorously determine the true, unrestricted minimizers for zero and for nonzero temperature in several cases, notably the half-filled band. For the cases treated here, we can exactly determine all broken and unbroken spatial and gauge symmetries of the Hamiltonian.

Key Words

Hubbard model Hartree-Fock theory symmetry breaking antiferromagnetism 


  1. 1.
    H. Araki, On quasifree states of CAR and Bogoliubov automorphisms,Publ. RIMS Kyoto 6: 385–442 (1970/71).Google Scholar
  2. 2.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity,Phys. Rev. 108:1175 (1957).CrossRefGoogle Scholar
  3. 3.
    V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory,Phys. Rev. Lett. 72:2981–2983 (1994).CrossRefGoogle Scholar
  4. 4.
    N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959), Appendix 2.Google Scholar
  5. 5.
    J.-P. Blaizot and G. Ripka,Quantum Theory of Finite Systems (MIT Press, Cambridge, Massachusetts, 1986).Google Scholar
  6. 6.
    V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules,Commun. Math. Phys. 147:527–548 (1992).CrossRefGoogle Scholar
  7. 7.
    M. Cryot, Theory of Mott transition: Application to transient metal oxides,J. Phys. (Paris)33:125–134 (1972).Google Scholar
  8. 8.
    P. G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966).Google Scholar
  9. 9.
    E. Dagatto, Y. Fand, A. E. Ruckenstein, and S. Schmitt-Rink, Holes in the infiniteU Hubbard model. Instability of the Nagaoka state,Phys. Rev. B 40:7406–7409 (1989).CrossRefGoogle Scholar
  10. 10.
    K. Dichtel, R. H. Jellito, and H. Koppe, The ground state of the neutral Hubbard model,Z. Physik 246:248–260 (1971); Thermodynamics of the Hubbard model,Z. Physik 251:173–184 (1972).CrossRefGoogle Scholar
  11. 11.
    B. Doucot and X. G. Wen, Instability of the Nagaoka state with more than one hole,Phys. Rev. B 40:2719–2722 (1989).CrossRefGoogle Scholar
  12. 12.
    E. Fradkin,Field Theories of Condensed Matter Systems (Addison-Wesley, Reading, Massachusetts, 1991).Google Scholar
  13. 13.
    M. Gaudin, Une démonstration simplifiée du théorème de Wick en méchanique statistique,Nucl. Phys. 15:89–91 (1960).CrossRefGoogle Scholar
  14. 14.
    M. C. Gutzwiller, The effect of correlation on the ferromagnetism of transition metals,Phys. Rev. Lett. 10:159–162 (1963).CrossRefGoogle Scholar
  15. 15.
    J. Hubbard, Electron correlations in narrow energy bands,Proc. R. Soc. Lond. A 276:238–257 (1963).Google Scholar
  16. 16.
    J. Kanamori, Electron correlation and ferromagnetism of transition metals,Prog. Theor. Phys. 30:275–289 (1963).Google Scholar
  17. 17.
    T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order,Physica 138A:320–358 (1986).Google Scholar
  18. 18.
    E. H. Lieb, Variational principle for many-fermion systems,Phys. Rev. Lett. 46:457–459 (1981); Errata47:69 (1981).Google Scholar
  19. 19.
    E. H. Lieb, Two theorems on the Hubbard model,Phys. Rev. Lett. 62:1201–1204 (1989).CrossRefGoogle Scholar
  20. 20.
    E. H. Lieb, The Hubbard model: Some rigorous results and open problems, inAdvances in Dynamical Systems and Quantum Physics, V. Figariet al., eds. (World Scientific, Singapore, in press).Google Scholar
  21. 21.
    E. H. Lieb, Thomas-Fermi and Hartree-Fock theory, inProceedings International Congress Mathematicians (Canadian Mathematical Society, 1975), pp. 383–386.Google Scholar
  22. 22.
    E. H. Lieb and M. Loss, Fluxes, Laplacians and Kasteleyn's theorem,Duke Math. J. 71:337–363 (1993).CrossRefGoogle Scholar
  23. 23.
    E. H. Lieb, M. Loss, and R. J. McCann, Uniform density theorem for the Hubbard model,J. Math. Phys. 34:891–898 (1993).CrossRefGoogle Scholar
  24. 24.
    E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems,Commun. Math. Phys. 53:185–194 (1977).CrossRefGoogle Scholar
  25. 25.
    Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled S-band,Phys. Rev. 147:392–405 (1966).CrossRefGoogle Scholar
  26. 26.
    D.R. Penn, Stability theory of the magnetic phases for a simple model of the transition metals,Phys. Rev. 142:350–365 (1966).CrossRefGoogle Scholar
  27. 27.
    A. Sütõ, Absence of highest spin ground states in the Hubbard model,Commun. Math. Phys. 140:43–62 (1991).CrossRefGoogle Scholar
  28. 28.
    B. S. Shastry, H. R. Krishnamurthy, and P. W. Anderson, Instability of the Nagaoka ferromagnetic state of theU=∞ Hubbard model,Phys. Rev. B. 41:2375–2379 (1990).CrossRefGoogle Scholar
  29. 29.
    B. Tóth, Failure of saturated ferromagnetism for the Hubbard model with two holes,Lett. Math. Phys. 22:321–333 (1991).CrossRefGoogle Scholar
  30. 30.
    D. J. Thouless, Exchange in solid3He and the Heisenberg Hamiltonian,Proc. Phys. Soc. (London)86:893–904 (1965).CrossRefGoogle Scholar
  31. 31.
    H. Tasaki, Extension of Nagaoka's theorem on the largeU Hubbard model,Phys. Rev. B 40:9192–9193 (1989).CrossRefGoogle Scholar
  32. 32.
    W. Thirring,A Course in Mathematical Physics, Vol. 4 (Springer, Vienna, 1980), p. 48.Google Scholar
  33. 33.
    J. G. Valatin, Comments on the theory of superconductivity,Nuovo Cimento [X] 7:843–857 (1958).Google Scholar
  34. 34.
    C. N. Yang and S. C. Zhang,SO 4 symmetry in a Hubbard model,Mod. Phys. Lett. B 4:759–766 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Volker Bach
    • 1
  • Elliott H. Lieb
    • 2
    • 3
  • Jan Philip Solovej
    • 3
  1. 1.FB MathematikTechnische Universität BerlinBerlinGermany
  2. 2.Department of PhysicsPrinceton UniversityPrinceton
  3. 3.Department of MathematicsPrinceton UniversityPrinceton

Personalised recommendations