Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Finite return times for measure-preserving transformations

This is a preview of subscription content, log in to check access.


  1. [1]

    Chacon, R. V.,A geometric construction of measure preserving transformations. InProceedings Fifth Berkeley Symp. Math. Stat. Prob., vol. II, part 2, 335–360. Univ. of California Press, Berkeley, 1967.

  2. [2]

    Conze, J. P.,Équations fonctionnelles et systèmes induits en théorie ergodique. Z. Wahrsch. Verw. Gebiete23 (1972), 75–82.

  3. [3]

    David, K.,A construction of uncountably many weak von Neumann transformations. Trans. Amer. Math. Soc.257 (1980), 397–410.

  4. [4]

    Friedman, N.,Introduction to ergodic theory. Van Nostrand Reinhold, New York, 1970.

  5. [5]

    Friedman, N. andOrnstein, D.,On isomorphism of weak Bernoulli transformations. Adv. in Math.5 (1970), 365–394.

  6. [6]

    Geman, D., Horowitz, J. andZinn, J.,Recurrence of stationary sequences. Ann. Probals.4 (1976), 372–381.

  7. [7]

    Hajian, A., Ito, Y. andKakutani, S.,Full groups and a theorem of Dye, Adv. in Math.17 (1975), 48–59.

  8. [8]

    Hansel, G.,Automorphismes induits et valeurs propres. Z. Wahrsch. Verw. Gebiete25 (1973), 155–157.

  9. [9]

    Neveu, J.,Temps d'arrêt d'un système dynamique. Z. Wahrsch. Verw. Gebiete13 (1969), 81–94.

  10. [10]

    Ornstein, D.,Bernoulli shifts with the same entropy are isomorphic. Adv. in Math.4 (1970), 337–352.

  11. [11]

    Shields, P.,Cutting and independent stacking of intervals. Math. Systems Theory7 (1973), 1–4.

  12. [12]

    Sinai, Ya. G.,Weak isomorphism of transformations with invariant measure. Trans. Amer. Math. Soc. (2)57 (1966), 123–143.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clark, J., David, K. Finite return times for measure-preserving transformations. Aeq. Math. 23, 24–29 (1981).

Download citation

AMS (1980) subject classification

  • Primary 28D05
  • Secondary 60G40