Advertisement

Discrete & Computational Geometry

, Volume 3, Issue 4, pp 367–382 | Cite as

A decomposition theorem on Euclidean Steiner minimal trees

  • F. K. Hwang
  • G. D. Song
  • G. Y. Ting
  • D. Z. Du
Article

Abstract

The Euclidean Steiner minimal tree problem is known to be an NP-complete problem and current alogorithms cannot solve problems with more than 30 points. Thus decomposition theorems can be very helpful in extending the boundary of workable problems. There have been only two known decomposition theorems in the literature. This paper provides a 50% increase in the reservoir of decomposition theorems.

Keywords

Equilateral Triangle Discrete Comput Geom Steiner Tree Decomposition Theorem Steiner Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. J. Cockayne, On the efficiency of the algorithm for Steiner minimal trees,SIAM J. Appl. Math. 18 (1970), 150–159.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Z. Du, F. K. Hwang, and G. Y. Ting, Steiner minimal trees on sets of four points,Discrete Comput. Geom. to appear.Google Scholar
  3. 3.
    M. R. Garey, R. L. Graham, and D. S. Johnson, The complexity of computing Steiner minimal trees,SIAM J. Appl. Math. 32 (1977), 835–859.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    E. N. Gilbert and H. O. Pollak, Steiner minimal trees,SIAM J. Appl. Math. 16 (1968), 1–29.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    H. O. Pollak, Some remarks on the Steiner problem,J. Combin. Theory Ser. A 24 (1978), 279–295.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • F. K. Hwang
    • 1
  • G. D. Song
    • 2
  • G. Y. Ting
    • 3
  • D. Z. Du
    • 4
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.Quiquihaer Light Engineering CollegeHeilungjiangChina
  3. 3.Quiquihaer Teacher's CollegeHeilungjiangChina
  4. 4.Mathematics Science Research InstituteBerkeleyUSA

Personalised recommendations