Discrete & Computational Geometry

, Volume 3, Issue 3, pp 237–256

Congruence, similarity, and symmetries of geometric objects

  • Helmut Alt
  • Kurt Mehlhorn
  • Hubert Wagener
  • Emo Welzl


We consider the problem of computing geometric transformations (rotation, translation, reflexion) that map a point setA exactly or approximately into a point setB. We derive efficient algorithms for various cases (Euclidean or maximum metric, translation or rotation, or general congruence).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHU]
    Aho, A. V., J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.MATHGoogle Scholar
  2. [Ata1]
    Atallah, M. J., Checking Similarity of Planar Figures, Internat. J. Comput. Inform. Science13 (1984), pp. 279–290.MATHMathSciNetCrossRefGoogle Scholar
  3. [Ata2]
    Atallah, M. J., On Symmetry Detection,IEEE Trans. Comput. 34 (1985), pp. 663–666.MathSciNetCrossRefGoogle Scholar
  4. [Atk]
    Atkinson, M. D., An Optimal Algorithm for Geometrical Congruence,J. Algorithms 8 (1987), pp. 159–172.MATHMathSciNetCrossRefGoogle Scholar
  5. [C]
    Collins, G.,Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition, Lecture Notes in Computer Science: Automata Theory and Formal Languages, Springer-Verlag, Berlin, 1975, pp. 134–183.Google Scholar
  6. [E]
    Edelsbrunner, H.,Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.MATHCrossRefGoogle Scholar
  7. [H]
    Highnam, P. T., Optimal Algorithms for Finding the Symmetries of a Planar Point Set,Inform. Process. Lett. 22 (1986), pp. 219–222.MATHMathSciNetCrossRefGoogle Scholar
  8. [M]
    Mehlhorn, K.,Data Structures and Algorithms, Vols. 1, 2, 3, Springer-Verlag, Berlin, 1984.Google Scholar
  9. [Ma]
    Martin, G. E.,Transformation Geometry, Springer-Verlag, New York, 1982.MATHCrossRefGoogle Scholar
  10. [Me]
    Megiddo, N., Linear-Time Algorithm for Linear Programming in ℝ3 and Related Problems,SIAM J. Comput. 12 (1983), pp. 759–776.MATHMathSciNetCrossRefGoogle Scholar
  11. [Mi]
    Mignotte, M., Identification of Algebraic Numbers,J. Algorithms 3 (1982), pp. 197–204.MATHMathSciNetCrossRefGoogle Scholar
  12. [PS]
    Preparata, F. P. and M. I. Shamos,Computational Geometry, Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
  13. [Sch]
    Schirra, St., Über die Bitkomplexität der ɛ-Kongruenz, Diplomarbeit, FB Informatik, Universität des Saarlandes, 1987.Google Scholar
  14. [W]
    Wunderlich, W.,Ebene Kinematik, Bibliographisches Institut, Mannheim, 1970.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Helmut Alt
    • 1
  • Kurt Mehlhorn
    • 2
  • Hubert Wagener
    • 3
  • Emo Welzl
    • 1
    • 4
  1. 1.Fachbereich MathematikFreie Universität BerlinBerlin 33Federal Republic of Germany
  2. 2.Fachbereich InformatikUniversität des SaarlandesSaarbrückenFederal Republic of Germany
  3. 3.Fachbereich InformatikTechnische Universität BerlinBerlin 10Federal Republic of Germany
  4. 4.Institutes for Information ProcessingTechnical University of GrazAustria

Personalised recommendations