Advertisement

Discrete & Computational Geometry

, Volume 2, Issue 2, pp 127–151 | Cite as

ɛ-nets and simplex range queries

  • David Haussler
  • Emo Welzl
Article

Abstract

We demonstrate the existence of data structures for half-space and simplex range queries on finite point sets ind-dimensional space,d≥2, with linear storage andO(n α ) query time,
$$\alpha = \frac{{d(d - 1)}}{{d(d - 1) + 1}} + \gamma for all \gamma > 0$$
.

These bounds are better than those previously published for alld≥2. Based on ideas due to Vapnik and Chervonenkis, we introduce the concept of an ɛ-net of a set of points for an abstract set of ranges and give sufficient conditions that a random sample is an ɛ-net with any desired probability. Using these results, we demonstrate how random samples can be used to build a partition-tree structure that achieves the above query time.

Keywords

Internal Node Range Query Query Time Finite Dimension Range Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Assouad, Densite et dimension,Ann. Inst. Fourier (Grenoble) 33 (1983), 233–282.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension,Proceedings of the 18th Symposium on Theory of Computation, 273–282, 1986.Google Scholar
  3. 3.
    B. Chazelle, L. Guibas, and D. T. Lee, The power of geometric duality,Proceedings of the 24th Symposium on Foundations of Computer Science, 217–225, 1983.Google Scholar
  4. 4.
    K. Clarkson, “A probabilistic algorithm for the post office problem,”Proceedings of the 17th Symposium on Theory of Computation, 175–185, 1985.Google Scholar
  5. 5.
    K. Clarkson, Further applications of random sampling to computational geometry,Proceedings of the 18th Symposium on Theory of Computation, 414–423, 1986.Google Scholar
  6. 6.
    R. Cole, Partitioning point sets in 4 dimensions,Proceedings of the Colloquium on Automata, Language and Programming, 111–119, Lecture Notes in Computer Science 194, Springer-Verlag, Berlin, 1985.Google Scholar
  7. 7.
    D. Dobkin and H. Edelsbrunner, Organizing Points in Two and Three Dimensions, Technical Report F130, Technische Universitat Graz, 1984.Google Scholar
  8. 8.
    D. Dobkin, H. Edelsbrunner, and F. Yao, A 3-space partition and its applications, manuscript.Google Scholar
  9. 9.
    R. M. Dudley, Central limit theorems for empirical measures,Ann. Probab. 6 (1978), 899–929.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Edelsbrunner, Problem P110,Bull. EATCS 26 (1985), 239.Google Scholar
  11. 11.
    H. Edelsbrunner,Algorithms in Combinatorial Geometry, EATCS Monographs in Theoretical Computer Science, Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar
  12. 12.
    H. Edelsbrunner and F. Huber, Dissecting Sets of Points in Two and Three-Dimensions, Technical Report F138, Technische Universitat Graz, 1984.Google Scholar
  13. 13.
    H. Edelsbrunner and E. Welzl, Constructing belts in two-dimensional arrangements with applications,SIAM J. Comput. 15 (1986), 271–284.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Edelsbrunner and E. Welzl, Halfplanar range search in linear space andO(n 0.695) query time,Inform. Process. Lett., to appear.Google Scholar
  15. 15.
    Branko Gruenbaum,Convex Polytopes, Interscience, New York, 1967.zbMATHGoogle Scholar
  16. 16.
    N. Sauer, On the density of families of sets,J. Combin. Theory Ser. A 13 (1972), 145–147.zbMATHCrossRefGoogle Scholar
  17. 17.
    V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities,Theory Probab. Appl. 16 (1971), 264–280.zbMATHCrossRefGoogle Scholar
  18. 18.
    V. N. Vapnik and A. Ya. Chervonenkis,The Theory of Pattern Recognition, Nauka, Moscow, 1974.Google Scholar
  19. 19.
    R. S. Wenocur and R. M. Dudley, Some special Vapnik-Chervonenkis classes,Discrete Math. 33 (1981), 313–318.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Willard, Polygon retrieval,SIAM J. Comput. 11 (1982), 149–165.zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    I. M. Yaglom and V. G. Bolyansky,Convex Figures, Holt, Rinehart and Winston, New York, 1961 (transl.).zbMATHGoogle Scholar
  22. 22.
    F. Yao, A 3-space partition and it applications,Proceedings of the 15th Symposium on Theory of Computation, 258–263, 1983.Google Scholar
  23. 23.
    A. Yao and F. Yao, A general approach tod-dimensional geometric queries,Proceedings of the 17th Symposium on Theory of Computation, 163–169, 1985.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • David Haussler
    • 1
  • Emo Welzl
    • 2
  1. 1.Department of Computer and Information SciencesUniversity of California at Santa CruzSanta CruzUSA
  2. 2.Institutes for Information ProcessingTechnical University of GrazGrazAustria

Personalised recommendations