Discrete & Computational Geometry

, Volume 7, Issue 4, pp 381–401

Area requirement and symmetry display of planar upward drawings

  • Giuseppe Di Battista
  • Roberto Tamassia
  • Ioannis G. Tollis
Article

Abstract

In this paper we investigate the problem of constructing planar straight-line drawings of acyclic digraphs such that all the edges flow in the same direction, e.g., from bottom to top. Our contribution is twofold. First we show the existence of a family of planar acyclic digraphs that require exponential area for any such drawing. Second, motivated by the preceding lower bound, we relax the straight-line constraint and allow bends along the edges. We present a linear-time algorithm that produces drawings of planarst-graphs with a small number of bends, asymptotically optimal area, and such that symmetries and isomorphisms of the digraph are displayed. If the digraph has no transitive edges, then the drawing obtained has no bends. Also, a variation of the algorithm produces drawings with exact minimum area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bertolazzi and G. Di Battista, On upward drawing testing of triconnected digraphs,Proceedings of the ACM Symposium on Computational Geometry, 1991, pp. 272–280.Google Scholar
  2. 2.
    N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A linear algorithm for embedding planar graphs using PQ-trees,Journal of Computer and System Sciences 30 (1985), 54–76.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    N. Chiba, K. Onoguchi, and T. Nishizeki, Drawing planar graphs nicely,Acta Informatica 22 (1985), 187–201.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. Chrobak, A linear-time algorithm for drawing a planar graph on a grid, Manuscript, University of California, Riverside, 1988.Google Scholar
  5. 5.
    G. Di Battista, W.-P. Liu, and I. Rival, Bipartite graphs, upward drawings, and planarity,Information Processing Letters 36 (1990), 317–322.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    G. Di Battista and R. Tamassia, Algorithms for plane representations of acyclic digraphs,Theoretical Computer Science 61 (1988), 175–198.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D. Dolev, F. T. Leighton, and H. Trickey, Planar embedding of planar graphs, inAdvances in Computing Research, vol. 2, F. P. Preparata, ed., JAI Press, Greenwich, CT, 1984, pp. 147–161.Google Scholar
  8. 8.
    P. Eades, A heuristic for graph drawing,Congressus Numerantium 42 (1984), 149–160.MathSciNetGoogle Scholar
  9. 9.
    P. Eades and R. Tamassia, Algorithms for automatic graph drawing: An annotated bibliography, Technical Report CS-89-09, Dept. of Computer Science, Brown University, 1989.Google Scholar
  10. 10.
    P. Eades and R. Tamassia, Algorithms for automatic graph drawing: An annotated bibliography,Networks (1992), to appear.Google Scholar
  11. 11.
    I. Fary, On straight lines representation of planar graphs,Acta Scientiarum Mathematicarum (Szeged) 11 (1948), 229–233.MathSciNetMATHGoogle Scholar
  12. 12.
    H. de Fraysseix, J. Pach, and R. Pollack, Small sets supporting Fary embeddings of planar graphs,Proceedings of the 20th ACM Symposium on Theory of Computing, 1988, pp. 426–433.Google Scholar
  13. 13.
    H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid,Combinatorica 10 (1990), 41–51.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    H. de Fraysseix and P. Rosenstiehl, A depth-first-search characterization of planarity,Annals of Discrete Mathematics 13 (1982), 75–80.MATHGoogle Scholar
  15. 15.
    L. J. Guibas and F. F. Yao, On translating a set of rectangles, inAdvances in Computing Research, vol. 1, F. P. Preparata, ed., JAI Press, Greenwich, CT, 1983, pp. 61–77.Google Scholar
  16. 16.
    J. Hopcroft and R. E. Tarjan, Efficient planarity testing,Journal of the Association for Computing Machinery 21 (1974), 549–568.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    M. Y. Hsueh and D. O. Pederson, Computer-aided layout of LSI circuit building-blocks,Proceedings of the IEEE International Symposium on Circuits and Systems, 1979, pp. 474–477.Google Scholar
  18. 18.
    M. D. Hutton and A. Lubiw, Upward planar drawing of single source acyclic digraphs,Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 203–211.Google Scholar
  19. 19.
    T. Kameda, On the vector representation of the reachability in planar directed graphs,Information Processing Letters 3 (1975), 75–77.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    D. Kelly, Fundamentals of planar ordered sets,Discrete Mathematics 63 (1987), 197–216.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    D. Kelly and I. Rival, Planar lattices,Canadian Journal of Mathematics 27 (1975), 636–665.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    D. Kelly and W. T. Trotter, Dimension theory for ordered sets, inOrdered Sets, I. Rival, ed., Reidel, Dordrecht, 1982, pp. 171–211.CrossRefGoogle Scholar
  23. 23.
    A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing of graphs,Theory of Graphs (Proc. International Symposium), Gordon and Breach, New York, 1967, pp. 215–232.Google Scholar
  24. 24.
    R. Lipton, S. North, and J. Sandberg, A method for drawing graphs,Proceedings of the ACM Symposium on Computational Geometry, 1985, pp. 153–160.Google Scholar
  25. 25.
    J. Manning, Computational complexity of geometric symmetry detection in graphs, Technical Report CSC-90-1, Dept. of Computer Science, University of Missouri, Rolla, 1990.Google Scholar
  26. 26.
    J. Manning and M. J. Atallah, Fast detection and display of symmetry in outerplanar graphs, Technical Report CSD-TR-606, Dept. of Computer Sciences, Purdue University, West Lafayette, 1986.Google Scholar
  27. 27.
    J. Manning and M. J. Atallah, Fast detection and display of symmetry in trees,Congressus Numerantium 64 (1988), 159–169.MathSciNetGoogle Scholar
  28. 28.
    C. Platt, Planar lattices and planar graphs,Journal of Combinatorial Theory, Series B 21 (1976), 30–39.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    R. Read, New methods for drawing a planar graph given the cyclic order of the edges at Each Vertex,Congressus Numerantium 56 (1987), 31–44.MathSciNetGoogle Scholar
  30. 30.
    E. Reingold and J. Tilford, Tidier drawing of trees,IEEE Transactions on Software Engineering 7 (1981), 223–228.CrossRefGoogle Scholar
  31. 31.
    I. Rival, Graphical data structures for ordered sets, inAlgorithms and Order, I. Rival, ed., Kluwer, Boston, 1989, pp. 3–31.CrossRefGoogle Scholar
  32. 32.
    I. Rival and J. Urrutia, Representing orders by translating convex figures in the plane,Order 4 (1988), 319–339.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    P. Rosenstiehl and R. E. Tarjan, Rectilinear planar layouts of planar graphs and bipolar orientations,Discrete & Computational Geometry 1 (1986), 343–353.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    W. Schnyder, Embedding planar graphs on the grid,Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 138–148.Google Scholar
  35. 35.
    S. K. Stein, Convex maps,Proceedings of the American Mathematical Society 2 (1951), 464–466.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    E. Steinitz and H. Rademacher,Vorlesung uber die Theorie der Polyeder, Springer-Verlag, Berlin, 1934.Google Scholar
  37. 37.
    J. A. Storer, On minimal node-cost planar embeddings,Networks 14 (1984), 181–212.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    K. J. Supowit and E. M. Reingold, The complexity of drawing trees nicely,Acta Informatica 18 (1983), 377–392.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    R. Tamassia, On embedding a graph in the grid with the minimum number of bends,SIAM Journal on Computing 16 (1987), 421–444.MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    R. Tamassia, G. Di Battista, and C. Batini, Automatic graph drawing and readability of diagrams,IEEE Transactions on Systems, Man and Cybernetics 18 (1988), 61–79.CrossRefGoogle Scholar
  41. 41.
    R. Tamassia and F. P. Preparata, Dynamic maintenance of planar digraphs, with applications,Algorithmica 5 (1990), 509–527.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    R. Tamassia and I. G. Tollis, A unified approach to visibility representations of planar graphs,Discrete & Computational Geometry 1 (1986), 321–341.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    R. Tamassia and I. G. Tollis, Planar grid embedding in linear time,IEEE Transactions on Circuits and Systems 36 (1989), 1230–1234.MathSciNetCrossRefGoogle Scholar
  44. 44.
    C. Thomassen, Planar acyclic oriented graphs,Order 5 (1989), 349–361.MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    W. T. Tutte, How to draw a graph,Proceedings of the London Mathematical Society 3 (1963), 743–768.MathSciNetCrossRefGoogle Scholar
  46. 46.
    K. Wagner, Bemerkungen zum Vierfarbenproblem,Jahresbericht der Deutschen Mathematiker-Vereinigung 46 (1936), 26–32.Google Scholar
  47. 47.
    D. Woods, Drawing planar graphs, Ph.D. dissertation (Technical Report STAN-CS-82-943), Computer Science Dept., Stanford University, 1982.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Roberto Tamassia
    • 2
  • Ioannis G. Tollis
    • 3
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”113 RomaItaly
  2. 2.Department of Computer ScienceBrown UniversityProvidenceUSA
  3. 3.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations