Discrete & Computational Geometry

, Volume 7, Issue 3, pp 219–226

Random projections of regular simplices

  • Fernando Affentranger
  • Rolf Schneider
Article

Abstract

Precise asymptotic formulae are obtained for the expected number ofk-faces of the orthogonal projection of a regularn-simplex inn-space onto a randomly chosen isotropic subspace of fixed dimension or codimension, as the dimensionn tends to infinity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Affentranger, The convex hull of random points with spherically symmetric distributions (submitted).Google Scholar
  2. 2.
    J. Böhm and E. Hertel,Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung, VEB Deutsch. Verl. d. Wiss., Berlin, 1980.MATHGoogle Scholar
  3. 3.
    B. Grünbaum,Convex Polytopes, Interscience, London, 1967.MATHGoogle Scholar
  4. 4.
    B. Grünbaum, Grassmann angles of convex polytopes,Acta Math. 121 (1968), 293–302.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    H. Hadwiger, Gitterpunktanzahl im Simplex und Wills'sche Vermutung,Math. Ann. 239 (1979), 271–288.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    P. McMullen, Non-linear angle-sum relations for polyhedral cones and polytopes,Math. Proc. Cambridge Philos. Soc. 78 (1975), 247–261.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    P. McMullen and G. C. Shephard,Convex Polytopes and the Upper Bound Conjecture, London Mathematical Society Lecture Notes, Vol. 3, Cambridge University Press, Cambridge, 1971.MATHGoogle Scholar
  8. 8.
    R. E. Miles, Poisson flats in Euclidean spaces. Part I: A finite number of random uniform flats,Adv. in Appl. Probab. 1 (1969), 211–237.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    H. Raynaud, Sur l'enveloppe convexe des nuages de points aléatoires dans ℝn,J. Appl. Probab. 7 (1970), 35–48.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    H. Ruben, On the geometrical moments of skew-regular simplices in hyperspherical space, with some applications in geometry and mathematical statistics,Acta Math. 103 (1960), 1–23.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    L. A. Santaló, Geometría integral en espacios de curvatura constante, Rep. Argentina Publ. Com. Nac. Energía Atómica, Ser. Mat 1, No. 1 (1952).Google Scholar
  12. 12.
    A. M. Vershik, Topology of the convex polytopes' manifolds, the manifold of the projective configurations of a given combinatorial type and representations of lattices. In:Topology and Geometry—Rohlin Seminar (Ed. O. Ya. Viro). Lecture Notes in Mathematics, Vol. 1346, Springer-Verlag, Berlin, 1988, pp. 557–581.CrossRefGoogle Scholar
  13. 13.
    A. M. Vershik and A. G. Chernyakov, Critical points of fields of convex polytopes and the Pareto-Smale optimum with respect to a convex cone.Soviet Math. Dokl. 26 (1982), 353–356. (Russian original:Dokl. Akad. Nauk SSSR 266 (1982), 529–532.)MATHGoogle Scholar
  14. 14.
    A. M. Vershik and P. V. Sporyshev, An estimate of the average number of steps in the simplex method, and problems in asymptotic integral geometry.Soviet Math. Dokl. 28 (1983), 195–199. (Russian original:Dokl. Akad. Nauk SSSR 271 (1983), 1044–1048.)MATHGoogle Scholar
  15. 15.
    A. M. Vershik and P. V. Sporyshev, An asymptotic estimate of the average number of steps of the parametric simplex method.U.S.S.R. Comput. Math. and Math. Phys. 26 (1986), 104–113. (Russian original:Zh. Vychisl. Mat. i Mat. Fiz. 26 (1986), 813–826.)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Fernando Affentranger
    • 1
  • Rolf Schneider
    • 1
  1. 1.Mathematisches InstitutAlbert-Ludwigs-UniversitätFreiburg i. Br.Federal Republic of Germany

Personalised recommendations